首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polyhedron》1991,10(23-24)
In a direct synthesis reaction of the tris(aminocarboxylato)cobalt(III) complexes with S-arginine all four theoretically possible tris(S-arginine)cobalt(III) diastereomers were obtained as tripositive complex ions. Besides, one out of 24 theoretically possible isomers of di-μ-hydroxo-tetrakis(S-arginine)dicobalt(III) tetrapositive ion was obtained. Geometrical and absolute configurations of the tris(S-arginine)cobalt(III) isomers were determined by electronic and CD spectroscopy. The molecular structure of the (-)589-anti(N)-Δ-cis(N),cis(O)-Λ-cis(N),cis(O)-di-μ-hydroxo-tetrakis(S-arginine)dicobalt(III) ion was solved by X-ray crystal structure analysis. The complexes obtained represent the first examples of cationic aminocarboxylato complexes of this type. For the first time the formation of the di-μ-hydroxo-tetrakis(aminocarboxylato)dicobalt(III) complex has been observed as a reaction concurrent to the formation of tris(aminocarboxylato)cobalt(III) complexes. Finally, the stereoselectivity of S-arginine in the tris(S-arginine)cobalt(III) isomers synthesis was discussed.  相似文献   

2.
The total synthesis of (+)-(6R,2′S)-cryptocaryalactone and (−)-(6S,2′S)-epi cryptocaryalactone is reported based on stereoselective reduction of δ-hydroxy β-keto ester to install 1,3-polyol system, cis Wittig olefination, and lactonization as the key steps. The synthesis of (−)-(6S,2′S)-epi cryptocaryalactone is also reported using syn-benzylidene acetal formation and a preferential Z-Wittig olefination reaction and lactonization as the key steps.  相似文献   

3.
Three pyridine coordinated cyclopalladated complexes: (S)-chloro{2-[2-(4-tert-butyl)oxazolinyl]phenyl-C,N}(4-R-pyridine)palladium(II) (R = H, 2; R = CF3, 3; R = NMe2, 4), have been synthesized and structurally characterized. While the crystal structure shows that 2 has a normal N,N-trans-conformation in the coordination sphere of palladium(II), 3 and 4 exhibit uncommon N,N-cis-conformations. From 1H NMR measurements, the major coordination isomer in deuterated chloroform solution is N,N-trans configuration for three palladacycles. It was found that the three complexes catalyze effectively the methanolysis of the PS pesticides including chiral thiophosphates but show different activity depending on the substituents of co-coordinated pyridine ring in 24.  相似文献   

4.
The interaction of optically pure 1R,2R-diammoniumyclohexane mono-(+)-tartrate and 1S,2S-diammoniumcyclohexane mono-(−)-tartrate with 2 equiv. of o-(diphenylphosphino)benzaldehyde in the presence of 2 equiv. of potassium carbonate in a refluxing ethanol/water mixture gave the optically pure condensation products N,N′-bis[o-(diphenylphosphino)benzylidene]-1R,2R-diiminocyclohexane[1R,2R-cyclohexyl-P2N2, (R,R)-I] and N,N′-bis[o-(diphenylphosphino)benzylidene]-1S,2S-diiminocyclohexane [1S,2S-cyclohexyl-P2N2, (S,S)-I], respectively, in good yield. Reduction of optically pure (R,R)-I and (S,S)-I with NaBH4 in ethanol gave the optically pure reduced products N,N′-bis[o-(diphenylphosphino)benzylidene]-1R,2R-diaminocyclohexane[1R,2R-cyclohexyl-P2N2H4, (R,R)-II] and N,N′-bis[o-diphenylphosphine)benzylidene]-1S,2S-diaminocyclohexane[1S,2S-cyclohexyl-P2N2H4, (S,S)-II], respectively, in good yield. The coordination behaviour of I and II toward salts of CuI and AgI have been examined. The interaction of [Cu(C)3CN)4][X] (X = ClO4, PF6) with 1 equiv. of optically pure L4 [L4 = (R,R)-I, (S,S)-I, (R,R)-II and (S,S)-II] gave the corresponding optically pure [CuL4][X] complexes, III–VI IIIa, L4 = (R,R)-I, X = PF6 IIIb, L4 = (R,R)-I, X = ClO4 IV, X = PF6; Va, L4 = (R,R)-II, X = PF6, Vb L4 = (R,R)-II, X= ClO4, VI L4 = (S,S)-II, X = PF6, in good yield. For the CuI complexes, the L4 ligand acted as a tetradentate ligand. However, a variable-temperature 31P[1H] NMR study of IIIb shows that at ambient temperature one of the imino groups of the tetradentate ligand undergoes rapid dissociation to form a tridentate ligand. The interaction of AgBF4 with 1 equiv. of otpically pure L4 [L4 = (R,R)-I, (S,S)-I, (R,R)-II and (S,S)-II gave the corresponding optically pure [AgL4][BF4] complexes, VII–X VII L4 = (R,R)-I; VIII, L4 = (S,S)-I; IX,L4 = (R,R)-II; X, L4 = (S,S)-II], in good yield. For the AgI complexes, the L4 ligand acted as a tetradentate ligand with the two amino groups coordinated unsymmetrically to the silver. A variable temperature 31P [1H] NMR study of VII suggests that at high temperature the complex exists as a tri-coordinated complex. The structurers of IV and IX were established by X-ray diffraction studies.  相似文献   

5.
Chlorodiphenylphosphine and 2,2′-biphenylylenephosphorochloridite react with 2-hydroxy-2′-(1,4-bisoxo-6-hexanol)-1,1′-biphenyl to yield the new α,ω-bis(phosphorus-donor)-polyether ligands, 2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2 (1) and 2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8) (2). These ligands react with Mo(CO)4(nbd) to form the monomeric metallacrown ethers, cis-Mo(CO)4{2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2} (cis-3) and cis-Mo(CO)4{2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8)} (cis-4), in good yields. The X-ray crystal structures of cis-3 and cis-4 are significantly different, especially in the conformation of the metal center and the adjacent ethylene group. The very different 13C-NMR coordination chemical shifts of this ethylene group in cis-3 and cis-4 suggest that the solution conformations of these metallacrown ethers are also quite different. Both metallacrown ethers undergo cistrans isomerization in the presence of HgCl2. Although the cistrans equilibrium constants for the isomerization reactions are nearly identical, the isomerization of cis-3 is more rapid. Phenyl lithium reacts with cis-3 to form the corresponding benzoyl complexes but does not react with either trans-3 or cis-4. Both the slower rate of cistrans isomerization of cis-4 and its lack of reaction with PhLi are consistent with weaker interactions between the hard metal cations and the carbonyl oxygens in both trans-3 and cis-4.  相似文献   

6.
A detailed exploration of the configurational and conformational space of glycolic acid and their conjugate bases has been carried out with the aid of first principles quantum chemical techniques at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory. The most stable configuration among the eight possible glycolic acid conformers corresponds to the E-s-cis, s-trans configuration, while the highest energy E-s-trans, s-cis conformer was found at 10.88 and 12.17 kcal mol−1 higher in energy at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. Upon dissociation of glycolic acid the s-cis(syn), and s-trans(anti) configurations of the glycolate anion can be formed. The anti conformer was found to be less stable than the syn one by 14.20 and 16.87 kcal mol−1 at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p)) levels of theory, respectively. The computed B3LYP/6-311+G(d,p) proton affinity of the syn conformer for the protonation process affording the more stable E-s-cis, s-trans conformer, in vacuum was found to be 325.35 kcal mol−1G0 value). From a methodological point of view, our results confirm the reliability of the integrated computational tool formed by the B3LYP density functional model. This model has subsequently been used to investigate the interaction of Ca2+ ions with the glycolic acid conformers and their conjugate bases in vacuum and in the presence of extra water ligands. For the complexes of glycolic acid conformers the η2–O,O–(COOH) coordination, that is the structure that arises from the coordination of the Ca2+ to the carboxylic group, is the global minimum of the PES, while the η2–O(OH),O–(COOH) coordination is a local minimum found at only 1.0 and 1.3 kcal mol−1 higher in energy at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. Moreover, the two isomers exhibit nearly the same binding affinities, which are predicted to be 89 and 85 kcal mol−1 at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. The same holds also true for the complexes of the glycolate anion. The η2–O,O–(COO) coordination involving the syn conformer of the glycolato ligand, is the global minimum, while the η2–O(OH),O–(COO) one lies at 1.5 and 5.6 kcal mol−1 higher in energy at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. The other conformer with an η2–O,O–(COO) coordination involving the anti conformer of the glycolato ligand, is less stable by only 0.2 kcal mol−1 at both levels of theory. Noteworthy is the trend seen for the incremental binding energy due to the successive addition of water molecules to [HOCH2C(O)O]Ca2+ species; the computed values are 30.4, 26.8, 22.9 and 16.2 kcal mol−1 at the B3LYP/6-311+G(d,p) level of theory for the mono-, di-, tri- and tetraaqua complexes, respectively. This trend arising from the repulsion of the dipoles between the water ligands and from unfavorable many body interactions is in accordance with those anticipated from electrostatic considerations. The Ca(II)-water interaction weakens with increasing coordination of the metal. Obviously, it is the electrostatic nature of the Ca(II)-water interactions that accounts well for the computed coordination geometries of the cationic (aqua)(glycolato)calcium complexes. Calculated structures, relative stability and bonding properties of the conformers and their complexes with [Ca(OH2)n]2+ (n=0–4) ions are discussed with respect to computed electronic and spectroscopic properties, such as charge density distribution, harmonic vibrational frequencies and NMR chemical shifts.  相似文献   

7.
The mechanism of stereoselective syntheses of amino acids via glycine Schiff base/metal complexes is discussed on the basis of data from the X-ray structure determination of (OC)3Mn[η5-C5H3(CH2NMe2)(CHNCHMeC(O)N---CHMeCOO)Cu]. The absolute configuration of the latter complex is S (the Mn and Cu atoms are trans with respect to the Cp plane).  相似文献   

8.
Abstract

The decarboxylation reaction of δ -cis-β-[Co(L1)(pdH)]2+ complex yielded δ -cis-β-[Co(L1) (R-pro)]2+, while the δ -cis-β-[Co(L2) (S-pro)]2+ was obtained from the reaction of δ -cis-β-[Co(L2) (pdH)]2+, where L1 is (3R)3-methyl-1, 6-bis[(2S)-pyrrolidin-2-yl]-2, 5-diazahexane, L2 is (3S) 3-methyl-1, 6-bis-[(2S)-pyrrolidin-2-yl]-2, 5-diazahexane, and pdH is the pyrrolidine-2, 2-dicarboxylate ion. The asymmetrically synthesized prolines were isolated via the decomposition of the decarboxylated complexes. The proline isolated from δ -cis-β-[Co(L1) (R-pro)]2+ showed a specific rotation of +12.0, representing a 24% excess of R-proline over S-proline, while the proline isolated from δ -cis-β-[Co(L2) (S-pro)]2+ showed a specific rotation of -10.0, indicating a 20% excess of S-proline over R-proline.  相似文献   

9.
An efficient enantioselective synthesis of β-adrenergic blockers (S)-propranolol and (S)-naftopidil with >98% ee using an l-proline-catalyzed α-aminoxylation of an aldehyde as a key step is described.  相似文献   

10.
1-, 2-cis-, 2-trans-, and 3-trans-heptenes (C7)are isomerized either very slowly or not at all with IrX(CO)L2 at 80°C in toluene and under N2. However, under the conditions of hydrogenation fast isomerisation takes place. With IrCl(CO)L2 as catalyst the rate of isomerisation decreases the order: 1-C7 ∼ 2-cis-C7 > 3-trans-C7 > 2-trans-C7. This sequence is independent of the ligand L in lrCl(CO)L2, however, with a particular isomer the rate of isomerisation is a function of L in the order L = PPh3 > P(C6H11)3 > P(OPh)3.  相似文献   

11.
A series of heterocyclic trans-dichloro-β-diketonato-cis-diorganoantimony(V) compounds of the type R2SbCl2X (R2 = (CH2)4, (CH2)5, o,o′−C6H4C6H4, o,o′−C6H4CH2C6H4; X = Acac, Dpm) has been synthesized. The stereochemistry of these compounds has been deduced from PMR spectroscopic and molecular dipole moment data. Since the cis-dichloro-β-diketonato-trans-diorganoantimony(V) compounds R2SbCl2Acac (R = Me, Et, Ph) were known previously, a set of both cis- and trans-diorgano main group organometallic complexes has thus been made available, which allows a comparative study of the influence of stereochemistry on the strength of metal—ligand interactions in this type of octahedral d10 metal complex. β-Diketonate—ligand exchange reactions have been studied by PMR spectroscopy, and a marked influence of stereochemistry observed. trans-Dichloro-β-diketonato-cis-diorganoantimony(V) compounds undergo ligand exchange only slowly, if at all, whereas cis-dichloro-β-diketonato-trans-diorganoantimony(V) compounds react instantaneously. Both PMR chemical shift data and IR spectroscopic data point to the occurrence of a stronger antimony-β-diketonate interaction in trans-dichloro-β-diketonato-cis-diorganoantimony than in cis-dichloro-β-diketonato-trans-diorganoantimony compounds. This can be understood in terms of the hybridization of the antimony valence orbitals. The results are in line with the assumption that Sb---O bond rupture is the rate-determining step in β-diketonate ligand exchange.  相似文献   

12.
Seven tetrazole-thione complexes, [Pd2(κ2-ptt)4]( 1 ), trans-[Pd(k1-S-ptt)2(PPh3)2] ( 2 ), trans-[Pd(k1-S-ptt)2(SPPh3)2] ( 3 ), trans-[Pd(k1-S-ptt)2(OPPh3)2] ( 4 ), [Pd(k1-N-ptt)2(k2-dppe)] ( 5a ), [Pd(k1-S-ptt)2(k2-dppe)] ( 5b ), [Pd(k1-S-ptt)2(k2-dppeS2)] ( 6 ), and [Pd(k1-S-ptt)2(k2-dppeO2)] ( 7 ), were prepared from 1-phenyl-1H-tetrazole-5-thiol (Hptt), with substituted phosphines. These complexes were investigated by CHNS analysis; infrared (IR), nuclear magnetic resonance (NMR) (1H and 31P), and ultraviolet–visible (UV–Vis) spectroscopy; and single-crystal X-ray data for 5b . In Complex 1 , the ptt ligand adopted μ2- k-N, k-S bridging mode to afford a dimeric complex, whereas in Complexes 2–4 , 6 , and 7 , the ptt was covalently coordinated via sulfur atom of the thiol group as a solo product. In contrast, in Complex 5 , the ptt ligand was bonded in a monodentate fashion through a deprotonated tetrazole ring nitrogen atom in isomer 5a or via a thiolato sulfur atom in isomer 5b . These linkage isomers were clearly shown in the 31P-{1H} NMR. To explain the adoption of the ligand binding modes in Complexes 5a and 5b , geometry optimization calculations were carried out on two isomers. Very small differences of all molecular parameters were found between 5a and 5b isomers. This confirms the reason for obtaining two isomers. Also, theoretical studies are made for all compounds, and excellent agreement is obtained with experimental data. The direct band gap (Eg) values are equal to 2.88, 2.85, and 2.45 eV for Complexes 1 , 2 , and 4 , respectively, revealing a semiconductor nature. The inhibition activity of Complexes 1–3 , 5 , and 8 were evaluated versus the growth of four types of bacteria in vitro. The complexes showed a good activity compared with free ligand and a standard antibiotic.  相似文献   

13.
Crystal and molecular structure of a new homodrimanic compound (1S,2S,4aS, 8aS)-N-(N-allyldiaminomethanethione)-1-(2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalenyl) acetamide has been determined by X-ray diffraction analysis. The crystal is monoclinic, unit cell parameters are: a = 9.577(2) Å, b = 7.414(1) Å, c = 16.856(3) Å; β = 94.83(3)°, space group P21, Z = 2, of composition C20H35N3O2S. Two cyclohexan fragments have ordinary structure and chair-configuration typical of this compound class in homodrimanic skeleton. Ethanol molecule is located in the outer sphere. The withdrawal of carbon atoms from planar fragments of cyclohexan rings varies within the limits from 0.722(5) Å to − 0.634(5) Å. A dihedral angle between the mean-square planes of the latter equals 16.0(2)°, torsion angle (5)-(5)-(10)-(16) 171.0(1)° indicates their trans-joint. In the side non linear chain allyl group is connected to terminal nitrogen atom of thiosemicarbazide molecule. Intermolecular hydrogen bonds between carbonyl atom of acetamide fragment, ethanol molecule, and donor-acceptor groups of thiosemicarbazide moiety play the main part in crystal structure organization. Original Russian Text Copyright ? 2005 by E. P. Styngach, S. T. Malinovskii, L. P. Bets, L. A. Vlad, M. Gdanets, and F. Z. Makaev __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 4, pp.785–789, July–August, 2005.  相似文献   

14.
The monomeric cis-dioxomolybdenum(VI) complexes [MoO2(oep-saldpen)] and [MoO2Cl2(oep-H2saldpen)], with a tetradentate [N2(imine)O2] and bidentate [N2(imine)] salen-type ligand functionalised with two pyrrole derivative pendant arms [oep-H2saldpen = 1,2-diphenylethylenebis(3-oxyethylpyrrole)salicylideneimine], were synthesised and characterised by 1H NMR, IR and Raman spectroscopy. The solid-state structure of the free ligand oep-H2saldpen was determined by single crystal X-ray diffraction. Assignment of the vibrational spectra of the molybdenum complexes was supported by carrying out ab initio calculations for the possible isomers using [MoO2(salen)] and [MoO2Cl2(H2salen)] as model compounds [H2salen = N,N′-ethylenebis(salicylideneimine)]. The oep-saldpen complexes were examined as catalysts for the epoxidation of cyclooctene, (R)-(+)-limonene, styrene, α-pinene, and cis and trans-β-methylstyrene, with tert-butyl hydroperoxide as the oxidant. Both complexes exhibited high selectivity for the epoxidation reaction, with the bis(chloro) complex being always the more active of the two.  相似文献   

15.
The dielectric properties of mixed monolayers of per-(6-amino-2,3-di-O-hexyl) β-CD hydrochloride (NH3-β-CD-OC6) and 1,2 dipalmitoyl, 3-sn-phosphatidic acid (DPPA) have been assessed using surface potential measurements at constant area. From the comparison of these surface potential (ΔV) versus surface density (δ) relationships with those of surface pressure (π) against surface density (δ) it was apparent that the increase in the NH3-β-CD-OC6 content in mixed films gave rise to a gradual increase in the saturation value of the surface potential (ΔVmax). This potential for pure DPPA was found to be equal to 396 mV and for pure CD 554 mV. The ΔVmaxvalues reflect the onset of reorientation effects that arrive at molar areas before the collapse of these films. Independently of reorientation effects, the obtained results strongly indicate that the dipolar term contributing to the overall ΔVvalue was for NH3-β-CD-OC6 due to the hydration of its NH+3group. For both DPPA and NH3-β-CD-OC6 molecules the contribution of the electric double layer (Ψ) was calculated and was found for DPPA and NH3-β-CD-OC6 to be equal to −249 and +252 mV, respectively. These calculated Ψ values made possible the evaluation of dipole moments for NH3-β-CD-OC6 and DPPA monolayers which revealed a marked difference in dipolar properties between these two film forming components. In contrast to DPPA which exhibited a decrease in the surface dipole moment (μ) with the decrease inA, NH3-β-CD-OC6 displayed an increase in μwith the decrease inAforAvalues above 580 Å2. Below this value μdecreases with decreasing molecular area and this variation arises from a change in the polarity of the electric double layer arising from interactions with the complementary anion. The differences in dielectric properties between the two film forming molecules have been attributed to modification, during compression, in the structure of the interfacial water bound to the cyclodextrin.  相似文献   

16.
The ability of the tetraaza‐dithiophenolate ligand H2L2 (H2L2 = N,N′‐Bis‐[2‐thio‐3‐aminomethyl‐5‐tert‐butyl‐benzyl]propane‐1,3‐diamine) to form dinuclear chromium(III) complexes has been examined. Reaction of CrIICl2 with H2L2 in methanol in the presence of base followed by air‐oxidation afforded cis,cis‐[(L2)CrIII2(μ‐OH)(Cl)2]+ ( 1a ) and trans,trans‐[(L2)CrIII2(μ‐OH)(Cl)2]+ ( 1b ). Both compounds contain a confacial bioctahedral N2ClCrIII(μ‐SR)2(μ‐OH)CrIIIClN2 core. The isomers differ in the mutual orientation of the coligands and the conformation of the supporting ligand. In 1a both Cl? ligands are cis to the bridging OH function. In 1b they are in trans‐positions. Reaction of the hydroxo‐bridged complexes with HCl yielded the chloro‐bridged cations cis,cis‐[(L2)CrIII2(μ‐Cl)(Cl)2]+ ( 2a ) and trans,trans‐[(L2)CrIII2(μ‐Cl)(Cl)2]Cl ( 2b ), respectively. These bridge substitutions proceed with retention of the structures of the parent complexes 1a and 1b .  相似文献   

17.
The new salt, tetra-n-butylammonium bis(benzene-1,2-dithiolato(2−)-κ2S,S′)platinate(III), [NBu4][Pt(C6H4S2)2] (1), has been synthesized in ethanol/water, and fully characterized by single crystal X-ray structure determination. The central platinum in the complex ion [Pt(bdt)2] is tetracoordinated by the S atoms of the bdt2− ligands (bdt2− is benzene-1,2-dithiolate) in a square-planar geometry. The well-resolved frozen solution EPR spectrum exhibits rhombic symmetry. The room temperature effective magnetic moment (μeff = 1.80 Bohr magneton) is in line with this spectrum and strongly supports the Pt(III) oxidation state in 1. This observation is in excellent agreement with previous results reported on closely related Ni(III), Pd(III) and Pt(III) species.  相似文献   

18.
Summary The reaction of [CrCl3(DMF)3] with C-meso-5, 12-dimethyl-1, 4, 8, 11-tetra-azacyclotetradecane(LM) in DMF gives a mixture ofcis-[CrLMCl2]Cl (ca. 90%) andtrans-[CrLMCl2]Cl (ca. 10%). These complexes are readily separated, as thecis-isomer is insoluble in warm methanol while thetrans-isomer is soluble. Using the dichlorocomplexes as precursors it has been possible to prepare a range ofcis-[CrLMX2]+ complexes (X=Br, NO 3 , N 3 , NCS and X2=bidentate oxalate) and alsotrans-[CrLMX2]+ complexes (X=Br, H2O or NCS). The spectroscopic properties and detailed stereochemistry of the complexes are discussed.The aquation and base hydrolysis kinetics ofcis- andtrans-[CrLMCl2]+ have been studied at 25° C. Base hydrolysis of thecis-complex is extremely rapid with KOH =1.46×105 dm3 mol–1 at 25° C. This unusual reactivity appears to be associated with thetrans II stereochemistry of thesec-NH centres of the macrocycle. Base hydrolysis of thetrans complex with thetrans III chiral nitrogen stereochemistry is quite normal with kOH =1.1 dm3 mol–1 s–1 at 25° C.  相似文献   

19.
Reaction of LWI(CO)n [L=hydrotris(3,5-dimethylpyrazol-1-yl)borate, n=2, 3] with NH4[S2PR2] [R=OEt, OPri, (−)-mentholate (R*), Ph] in acetonitrile or THF results in the formation of the dithio ligand complexes LW(S2PR2-S)(CO)2. The yellow–orange, diamagnetic complexes exhibit IR spectra featuring two ν(CO) bands at ca. 1950 and 1840 cm−1 and 1H-NMR spectra consistent with fluxional behavior in solution. Crystallographic characterisation of LW{S2P(OPri)2-S}(CO)2 revealed a six-coordinate, distorted octahedral complex composed of a tungsten center coordinated by a monodentate dithiophosphate ligand, two cis carbonyl ligands, and a facial, tridentate L ligand. Unlike analogous complexes bearing strictly monodentate sulfur donor ligands, the LW(S2PR2)(CO)2 complexes undergo reactions with oxygen atom donors to produce (carbonyl)oxo complexes of the type LWO(S2PR2-S)(CO).  相似文献   

20.
Irradiation cis-[M(Ln-S,O)2] complexes (M = PtII, PdII) derived from N,N-dialkyl-N′-benzoylthioureas (HLn) with various sources of intense visible polychromatic or monochromatic light with λ < 500 nm leads to light-induced cis?→?trans isomerization in organic solvents. In all cases, white light derived from several sources or monochromatic blue-violet laser 405 nm light, efficiently results in substantial amounts of the trans isomer appearing in solution, as shown by 1H NMR and/or reversed-phase HPLC separation in dilute solutions at room temperature. The extent and relative rates of cis/trans isomerization induced by in situ laser light (λ = 405 nm) of cis-[Pd(L2-S,O)2] was directly monitored by 1H NMR and 195Pt NMR spectroscopy of selected cis-[Pt(L-S,O)2] compounds in chloroform-d; both with and without light irradiation allows the δ(195Pt) chemical shifts cis/trans isomer pairs to be recorded. The cis/trans isomers appear to be in a photo-thermal equilibrium between the thermodynamically favored cis isomer and its trans counterpart. In the dark, the trans isomer reverts back to the cis complex in what is probably a thermal process. The light-induced cis/trans process is the key to preparing and isolating the rare trans complexes which cannot be prepared by conventional synthesis as confirmed by the first example of trans-[Pd(L-S,O)2] characterized by single-crystal X-ray diffraction, deliberately prepared after photo-induced isomerization in acetonitrile solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号