首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
盘-销摩擦系统摩擦接触力测试与特性分析   总被引:1,自引:1,他引:0  
测量分析动态摩擦接触力是研究摩擦振动与噪声发生机理的关键.本文中建立了盘-销系统摩擦尖叫试验台架,成功再现了摩擦尖叫.采用三向力传感器对有无摩擦尖叫条件下的动态摩擦接触力进行了测量,并利用小波信号分解、概率密度函数、功率谱密度函数、时频分析等方法进行了分析和讨论.研究发现:在发生摩擦尖叫时,动态摩擦力和法向力发生高频波动,是系统噪声的激励源;无摩擦尖叫时的摩擦力和法向力的动态分量为典型的白噪声随机过程,呈非高斯分布;有摩擦尖叫时的摩擦力和法向力为窄带高频类谐波信号,摩擦力呈非高斯分布,而法向力近似为高斯分布;模态耦合是导致盘-销系统发生动态接触力高频波动以及摩擦尖叫的原因.  相似文献   

2.
张菊明  王思敬 《力学学报》1997,5(3):242-250
由两组结构面控制的四面体块体是岩体中最基本的结构体, 其稳定性取决于块体所受荷载及结构面上的摩阻力。正确判定边界面上摩阻力分布是评价块体稳定性的关键。本文提出的块体稳定性分析适用于岩体所受荷载为三维非共点力系。在不同外力作用下块体可产生平动、转动、翘扭及倾倒等各种三维失稳组合形式, 从而得到更为合理的块体稳定性评价。  相似文献   

3.
To investigate the nonlinear vibration behavior of a shrouded blade with friction dynamic contact interface, a friction contact stiffness model is proposed to describe the friction force at different rough interfaces and different normal loads. In the proposed model, the friction contact interface is discretized to a series of friction contact pairs and each of them can experience stick, slip, or separate states. Fractal geometry is used to simulate the topography of contact surfaces. The contact stiffness is calculated using the Hertz contact theory and fractal geometry, which is related to contact interfaces parameters including normal load, roughness, Young??s modulus, and Poisson??s ratio. The trajectory tracking method is used to predict the friction force and it is not necessary to judge the transition condition among stick, slip, and separate states. It is suitable for complicated periodic motion of the contact interfaces. The forced response of a real shrouded blade is predicted using the proposed model and the multi-harmonic balance method. The effect of surface roughness, initial normal load, and contact area on the forced response of a shrouded blade is studied. It is shown that contact stiffness increases with normal load and fractal dimension. The resonant amplitude is sensitive to the initial normal load and contact surface roughness. The response can be influenced by the contact area, which is an important parameter for blade designers.  相似文献   

4.
Fu  Yiqiang  Ouyang  Huajiang  Benjamin Davis  R. 《Nonlinear dynamics》2020,100(3):1941-1962

A new sliding-mode triboelectric energy harvester in the form of a cantilever beam with a tip mass that is acted upon by both magnetic and friction forces is modelled and simulated. A numerical scheme based on the trapezoidal rule with the second-order backward difference formula (TR-BDF2) method is introduced to solve the combined non-smooth mechanical and stiff electrical system. This is the first study of the structural dynamics of the sliding-mode triboelectric energy harvesting; additionally, a magnetic field that induces multistability is present. A comparison between the coupled and uncoupled electromechanical models suggests that the electrostatic force between the electrodes can be ignored, which makes the uncoupled model preferable in the dynamical analysis. The influence of the non-conservative force (the friction force) on the multistability of the system is investigated. It is found that the distribution of the multistability on the parametric plane changes even when a small amount of friction is involved, and the areas of bistability and tristability shrink while that of the monostability expands. A comparison among these three types of stability reveals the superiority of invoking bistability as it facilitates broadband energy harvesting. The excitation level plays an important role in inducing the snap-through motion (the interwell oscillation) by enabling the crossing of the energy barriers between wells. The increase in the friction shrinks the frequency band of interwell oscillations from high frequencies down to low frequencies on the discrete frequency sweep. An analysis of the basins of attraction finds that at low frequencies the bistable system can undergo only interwell oscillations, while the tristable system can merely experience intrawell oscillations. The basins can intermingle with each other in both bistable and tristable systems. Finally, an increase in the excitation level can break the basins into discrete pieces and/or points.

  相似文献   

5.
郑鹏  王琪  吕敬  郑旭东 《力学学报》2020,52(1):162-170
本文研究了圆弧足被动行走器支撑足与地面间的摩擦系数和滚阻系数对被动行走器步态的影响. 首先分别利用扩展的 赫兹接触力模型和LuGre摩擦模型描述了支撑足与地面接触点处的法向支撑力和切向摩擦力,并考虑了行走过程中支撑足 所受的滚动摩阻;其次利用第二类Lagrange方程推导出了该系统的动力学方程,并通过与已有成果的对比确定 了合适的LuGre摩擦模型参数;最后仿真分析了摩擦系数和滚阻系数对被动行走器步态的影响. 研究发现:摩擦系数的改变 虽然对被动行走器行走的平均速度、步幅,以及支撑足接触点处的最大法向接触力的影响较小,但摩擦系数的减小 会改变其行走步态类型,如发生倍周期分岔甚至混沌现象;然而,滚阻系数的改变会对行走器行走的 平均速度、步幅,以及支撑足接触点处的最大法向接触力的影响较大,尚未发现滚阻系数的改变会引起其行走步态的变化.   相似文献   

6.
7.
The present study investigates nonlinear vibration and dynamic behaviour of a ceramic-on-ceramic hip implant. The aim of this research is to firstly gain a better understanding of hip squeaking and vibration and secondly to investigate the effect of friction on contact point path during normal gait. For this purpose, a spatial multibody dynamic hip model was developed, using a friction-velocity constitutive law combined with a Hertzian contact model. Furthermore, the physiological three-dimensional rotation angles and forces are taken into account to calculate tangential and normal contact forces, respectively. Comparing the outcomes with that available in the literature allowed for the validation of our approach. It was shown that the cause of hip squeaking is friction-induced vibration owing to different phenomena such as stick–slip friction, negative-sloping friction and contact force changes. Moreover, friction-induced vibration does significantly change contact point path during the gait when compared to non-friction analysis.  相似文献   

8.
The problem of motion of a homogeneous ball on a horizontal plane is considered. It is assumed that the contact patch is of spherical shape, whereas the pressure center does not coincide with the center of the contact patch and is displaced in the sliding direction of the ball. The friction force has two components that are parallel and perpendicular to the sliding velocity; the friction force moment has a vertical component and two horizontal components being parallel and perpendicular to the sliding velocity.  相似文献   

9.
Oscillation pattern of stick-slip vibrations   总被引:1,自引:0,他引:1  
This paper studies the stick-slip oscillations of discrete systems interacting with translating energy source through a non-linear smooth friction curve. The stick-slip limit cycle oscillations of a single degree-of-freedom model are examined by means of numerical time-integration and analytical methods. Similar approaches are also applied to the model of the coupled friction oscillator. Particularly, it is found that the steady-state response of the coupled oscillator can be divided into two different forms of oscillation (mode-merged and mode-separated oscillations) according to the frequency separation of two modes. The oscillation pattern of the steady-state response is shown to depend on system parameters such as detuning factor, energy source speed, and normal contact load.  相似文献   

10.
Summary  It was often observed that friction forces can be reduced significantly if ultrasonic oscillations are superposed to the macroscopic sliding velocity. This phenomenon can be used to improve machining processes by addition of ultrasonic vibration to tools or workpieces, and forms the basis for many processes of ultrasonic machining. On the other hand, ultrasonic vibrations can be used to generate motion. The thrusting force of ultrasonic motors is provided to the rotor through friction. In the present paper, a simple theoretical model for friction in the presence of ultrasonic oscillations is derived theoretically and validated experimentally. The model is capable of predicting the reduction of the macroscopic friction force as a function of the ultrasonic vibration frequency and amplitude and the macroscopic sliding velocity. Received 22 November 2000; accepted for publication 6 February 2001  相似文献   

11.
弹塑性微凸体侧向接触相互作用能耗   总被引:3,自引:2,他引:1  
传统的结合面研究多基于光滑刚性平面与等效粗糙表面接触假设,忽略了结合面上微凸体侧向接触及相邻微凸体之间的相互作用,这导致理论模型与实际结合面存在较大出入.针对承受法向静、动态力的机械结合面,从微观上研究了微凸体侧向接触及相互作用的接触能耗.将法向静、动态力分解为法向分力和切向分力,获取弹性/弹塑性/塑性阶段考虑微凸体侧接触及相互作用的加、卸载法向分力-变形和切向分力-位移的关系.通过力的合成定理,从而获取加、卸载法向合力与总变形之间的关系,由于法向分力产生的塑性变形及切向分力产生的摩擦,导致加载、卸载法向合力-总变形曲线存在迟滞回线.通过对一个加、卸载周期内的法向合力-总变形曲线积分,获得一个周期的微凸体接触能耗,包括应变能耗及摩擦能耗.仿真分析表明:微凸体在3个阶段的能耗均随变形的增大而非线性增大.微凸体侧向接触角度越大,能耗越大,且在弹性阶段最为明显.在弹性阶段,仅存在侧向的摩擦能耗,故结合面在低载荷作用下必须采用双粗糙表面假设.在塑性阶段,由于微凸体接触能耗为应变能耗,且接触角对其能耗影响甚微,故结合面在大载荷作用下可采用单平面假设对其进行研究.相对于KE和Etsion模型,本文提出的模型与Bartier的实验结果更吻合.  相似文献   

12.
The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively. The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem (LCP) algorithm and the trial-and-error algorithm. Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.  相似文献   

13.
This paper investigates the behavior of a non-linear mechanical model where a block is driven by an oscillating ground through Coulomb friction, a linear viscous damper and a linear spring. The governing equation is solved analytically for different partial configurations: friction only, friction with viscous damping, friction with a linear restoring force, and for the complete model. Using dimensionless groups, the analysis of the block motion provides a comprehensive set of information on the motion regime (stick, stick-slip or permanent sliding), on the dominant energies or forces, on the resonance and on the amplification of the ground oscillation by the system. The limit between the stick-slip regime and the permanent slipping regime is found either analytically or numerically. It is also shown that there exists a set of parameters for which the friction force, the viscous dissipative force and the elastic restoring force are equal.  相似文献   

14.
A nonlinear model of an aircraft braking system is presented and used to investigate the effects of damping on the stability in Chevillot et al. (Arch Appl Mech 78(12):949–963, 2008). It has been shown that the addition of damping into the equations of motion does not lead systematically to the stabilization of the system. In the case of a mode-coupling instability, there is indeed an optimal ratio between the modal damping coefficients of the two modes in coalescence, that maximize the stable area. But the stable area is not a sufficient criterion. In dynamics, the amplitude of the vibrations and the transient behavior characterized by the speed of increase of the oscillations are best indicators. In this paper, the same nonlinear model of the aircraft braking system is used to compute time-history responses by integration of the full set of the nonlinear dynamic equations. The aim of the study is to evaluate the effects of damping on the nonlinear dynamics of the brake. It is shown that damping may be very efficient to significantly reduce and slow down the increase of the friction-induced vibrations. But, in the same way as for the stability area, there exists a value of the damping ratio that optimizes the effects of damping.  相似文献   

15.
In this paper, the onset of sliding between two elastic half-spaces in contact, subjected to a tangential force, is studied within the framework of critical phenomena. First, it is shown that the contact domain between two rough surfaces is a lacunar set and that the distribution of contact stresses is multifractal. By applying an increasing tangential force, under constant normal load, the so-called regime of partial-slip comes into play. However, the continuous and smooth transition to full sliding, predicted by the classical Cattaneo-Mindlin theory, is not confirmed by the experiments, which show marked frictional instabilities. A numerical multi-scale procedure is proposed, taking into account the redistribution of stress, consequent to partial-slip, among the contact areas at all scales. It is shown that the lacunarity of the contact domain delays the onset of instability, when compared to compact Euclidean domains. Independently of the assumptions made for the frictional behaviour at the scale of the asperities (Coulomb friction for meso-scale asperities, adhesion for micro-scales), renormalization permits the critical value of the tangential force which provides the instability to be found. Moreover, the multifractal analysis of the domains where the shear resistance is activated captures the size-scale effects on the friction coefficient, currently evidenced by the experiments.  相似文献   

16.
An analytic solution to the problem of motion of a slender rigid body in a semi-infinite domain of a compressible fluid is obtained for the case when the body moves in parallel to the free surface at a constant velocity. This problem is similar to the problem of motion of a hydrofoil ship whose wing-like device allows it to lift its hull above the water surface and to decrease the friction and drag forces limiting the speed of usual ships. During its motion in water, a hydrofoil produces a lift force. The obtained analytic solution allows one to derive explicit expressions for the drag force and for the lift force in the limiting cases of relatively small and large depths. When depth is small, the drag force is greater than that in an infinite medium, since the wave drag is additionally evolved. When the velocity increases and approaches the sound velocity, the forces exerted on the body increase without limit, which is typical for a linear formulation of the problem.  相似文献   

17.
王晓军  王琪 《力学学报》2015,47(5):814-821
基于接触力学理论和线性互补问题的算法, 给出了一种含接触、碰撞以及库伦干摩擦, 同时具有理想定常约束(铰链约束) 和非定常约束(驱动约束) 的平面多刚体系统动力学的建模与数值计算方法. 将系统中的每个物体视为刚体, 但考虑物体接触点的局部变形, 将物体间的法向接触力表示成嵌入量与嵌入速度的非线性函数,其切向摩擦力采用库伦干摩擦模型. 利用摩擦余量和接触点的切向加速度等概念, 给出了摩擦定律的互补关系式; 并利用事件驱动法, 将接触点的黏滞-滑移状态切换的判断及黏滞状态下摩擦力的计算问题转化成线性互补问题的求解. 利用第一类拉格朗日方程和鲍姆加藤约束稳定化方法建立了系统的动力学方程, 由此可降低约束的漂移, 并可求解该系统的运动、法向接触力和切向摩擦力, 还可以求解理想铰链约束力和驱动约束力. 最后以一个类似夯机的平面多刚体系统为例, 分析了其动力学特性, 并说明了相关算法的有效性.   相似文献   

18.
通过固液界面摩擦力测试装置研究了微液滴在PDMS软基体表面运动时的动态摩擦学行为,并对微液滴体积、滑动速度及软基体力学性能对固液界面动态摩擦行为的影响进行了分析. 结果表明:微液滴在软基体表面运动时表现出最大静摩擦力和动态摩擦力. 最大静摩擦力与微液滴黏度和速度梯度呈正比,动态摩擦力与微液滴体积、滑动速度和基体力学性能有关. 随着微液滴体积的增加,三相接触线长度增加,动态摩擦力增加;随着相对滑动速度增加,三相接触线长度及接触角滞后增加,动态摩擦力增加;随着软基体弹性模量降低,固液界面黏附力增加,固液界面运动能量耗散增加,动态摩擦力增加. 研究结果可为PDMS软基体表面微液滴的精确驱动和运动参数优化提供理论指导,也可进一步丰富固液界面摩擦理论.   相似文献   

19.
Friction of solids involves short-range forces between adjacent surface layers, which are largely determined by the shape and structure of those layers, which are themselves determined to a considerable extent by the relative velocity. A theory of friction thus involves the microstructure and the detailed physical phenomena near the surfaces.However, most existing theories are based on phenomenological (essentially macroscopic) concepts (see [1] for a survey), though the explicit use of microscopic concepts is presented in [2], where it is shown that one elastic body sliding over another gives rise to elastic waves that carry energy away from the contact surface. This loss may be treated formally as due to a tangential force resisting the motion. The force defined in this way has a falling velocity characteristic.There is much evidence that the friction differs greatly from that for ordinary elastic bodies if one body (or both) should be highly elastic (rubber, polymer, etc) [3]. A model describing these differences would be of considerable interest.Here we consider the somewhat idealized ease of a rubbery body sliding over a crystalline one; the frictional force is deduced as a function of the velocity and other parameters. The surfaces are taken as smooth and clean, while the bodies are homogeneous. Various simplifying assumptions are made, but these are unimportant from the qualitative standpoint.We are indebted to G. I. Barenblatt for a discussion.  相似文献   

20.
Forced oscillations of a cylindrical droplet of an inviscid liquid surrounded by another liquid and bounded in the axial direction by rigid planes are investigated. The system is affected by vibrations whose force is directed parallel to the axis of symmetry of the droplet. The velocity of motion of the contact line is proportional to the deviation of the contact angle from the value at which the droplet is in equilibrium. Linear and nonlinear oscillations are considered. The conditions of the occurrence of resonance are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号