首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《随机分析与应用》2013,31(5):1295-1314
Abstract

In the present investigation, numerical methods are developed for approximate solution of stochastic boundary-value problems. In particular, shooting methods are examined for numerically solving systems of Stratonovich boundary-value problems. It is proved that these methods accurately approximate the solutions of stochastic boundary-value problems. An error analysis of these methods is performed. Computational simulations are given.  相似文献   

2.
《随机分析与应用》2012,30(1):149-170
Abstract

We compute some functionals related to the generalized joint Laplace transforms of the first times at which two-dimensional jump processes exit half strips. It is assumed that the state space components are driven by Cox processes with both independent and common (positive) exponential jump components. The method of proof is based on the solutions of the equivalent partial integro-differential boundary-value problems for the associated value functions. The results are illustrated on several two-dimensional jump models of stochastic volatility which are based on non-affine analogs of certain mean-reverting or diverting diffusion processes representing closed-form solutions of the appropriate stochastic differential equations.  相似文献   

3.
We prove that a quantum stochastic differential equation is the interaction representation of the Cauchy problem for the Schrödinger equation with Hamiltonian given by a certain operator restricted by a boundary condition. If the deficiency index of the boundary-value problem is trivial, then the corresponding quantum stochastic differential equation has a unique unitary solution. Therefore, by the deficiency index of a quantum stochastic differential equation we mean the deficiency index of the related symmetric boundary-value problem.In this paper, conditions sufficient for the essential self-adjointness of the symmetric boundary-value problem are obtained. These conditions are closely related to nonexplosion conditions for the pair of master Markov equations that we canonically assign to the quantum stochastic differential equation.  相似文献   

4.
Algorithms for calculating the junction points between optimal nonsingular and singular subarcs of singular control problems are developed. The algorithms consist in formulating appropriate initialvalue and boundary-value problems; the boundary-value problems are solved with the method of multiple shooting. Two examples are detailed to illustrate the proposed numerical methods.The author would like to thank Professor Dr. R. Bulirsch, who stimulated and encouraged this work, which is part of the author's dissertation.  相似文献   

5.
《Optimization》2012,61(5):649-671
Abstract

We show that many different concepts of robustness and of stochastic programming can be described as special cases of a general non-linear scalarization method by choosing the involved parameters and sets appropriately. This leads to a unifying concept which can be used to handle robust and stochastic optimization problems. Furthermore, we introduce multiple objective (deterministic) counterparts for uncertain optimization problems and discuss their relations to well-known scalar robust optimization problems by using the non-linear scalarization concept. Finally, we mention some relations between robustness and coherent risk measures.  相似文献   

6.
The direct shooting method for the solution of boundary-value problems for ordinary, nonlinear differential equations is analyzed from the point of view of linearization. Some relations between this method and perturbation methods are established. The relations between the direct shooting algorithm and Whittaker's algorithm are also established, considering the problem from the point of view of solving nonlinear algebraic equations.  相似文献   

7.
Methods of interval mathematics are used to find upper and lower bounds for the solution of two-point boundary-value problems at discrete mesh points. They include interval versions of shooting and of finite-difference techniques for linear and non-linear differential equations of second order, and of finite-difference methods for Sturm-Liouville eigenvalue problems.Good results are obtained whenever the difficulties of dependency-width can be avoided, and particularly for the finite-difference method when the associated matrix is anM matrix.  相似文献   

8.
The purpose of this paper is to report on the application of multipoint methods to the solution of two-point boundary-value problems with special reference to the continuation technique of Roberts and Shipman. The power of the multipoint approach to solve sensitive two-point boundary-value problems with linear and nonlinear ordinary differential equations is exhibited. Practical numerical experience with the method is given.Since employment of the multipoint method requires some judgment on the part of the user, several important questions are raised and resolved. These include the questions of how many multipoints to select, where to specify the multipoints in the interval, and how to assign initial values to the multipoints.Three sensitive numerical examples, which cannot be solved by conventional shooting methods, are solved by the multipoint method and continuation. The examples include (1) a system of two linear, ordinary differential equations with a boundary condition at infinity, (2) a system of five nonlinear ordinary differential equations, and (3) a system of four linear ordinary equations, which isstiff.The principal results are that multipoint methods applied to two-point boundary-value problems (a) permit continuation to be used over a larger interval than the two-point boundary-value technique, (b) permit continuation to be made with larger interval extensions, (c) converge in fewer iterations than the two-point boundary-value methods, and (d) solve problems that two-point boundary-value methods cannot solve.  相似文献   

9.
ABSTRACT

Our purpose of this paper is to study stochastic control problems for systems driven by mean-field stochastic differential equations with elephant memory, in the sense that the system (like the elephants) never forgets its history. We study both the finite horizon case and the infinite time horizon case.
  • In the finite horizon case, results about existence and uniqueness of solutions of such a system are given. Moreover, we prove sufficient as well as necessary stochastic maximum principles for the optimal control of such systems. We apply our results to solve a mean-field linear quadratic control problem.

  • For infinite horizon, we derive sufficient and necessary maximum principles.

    As an illustration, we solve an optimal consumption problem from a cash flow modelled by an elephant memory mean-field system.

  相似文献   

10.
Abstract

We consider stochastic optimal control problems in Banach spaces, related to nonlinear controlled equations with dissipative non linearities: on the nonlinear term we do not impose any growth condition. The problems are treated via the backward stochastic differential equations approach, that allows also to solve in mild sense Hamilton Jacobi Bellman equations in Banach spaces. We apply the results to controlled stochastic heat equation, in space dimension 1, with control and noise acting on a subdomain.  相似文献   

11.
This paper considers parametric nonlinear control problems subject to mixed control-state constraints. The data perturbations are modeled by a parameterp of a Banach space. Using recent second-order sufficient conditions (SSC), it is shown that the optimal solution and the adjoint multipliers are differentiable functions of the parameter. The proof blends numerical shooting techniques for solving the associated boundary-value problem with theoretical methods for obtaining SSC. In a first step, a differentiable family of extremals for the underlying parameteric boundary-value problem is constructed by assuming the regularity of the shooting matrix. Optimality of this family of extremals can be established in a second step when SSC are imposed. This is achieved by building a bridge between the variational system corresponding to the boundary-value problem, solutions of the associated Riccati ODE, and SSC.Solution differentiability provides a theoretical basis for performing a numerical sensitivity analysis of first order. Two numerical examples are worked out in detail that aim at reducing the considerable deficit of numerical examples in this area of research.This paper is dedicated to Professor J. Stoer on the occasion of his 60th birthday.The authors are indebted to K. Malanowski for helpful discussions.  相似文献   

12.
《Optimization》2012,61(9):1719-1747
ABSTRACT

By utilizing a min-biaffine scalarization function, we define the multivariate robust second-order stochastic dominance relationship to flexibly compare two random vectors. We discuss the basic properties of the multivariate robust second-order stochastic dominance and relate it to the nonpositiveness of a functional which is continuous and subdifferentiable everywhere. We study a stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and develop the necessary and sufficient conditions of optimality in the convex case. After specifying an ambiguity set based on moments information, we approximate the ambiguity set by a series of sets consisting of discrete distributions. Furthermore, we design a convex approximation to the proposed stochastic optimization problem with multivariate robust second-order stochastic dominance constraints and establish its qualitative stability under Kantorovich metric and pseudo metric, respectively. All these results lay a theoretical foundation for the modelling and solution of complex stochastic decision-making problems with multivariate robust second-order stochastic dominance constraints.  相似文献   

13.
Abstract

It is shown how different but equivalent Itô stochastic differential equation models of random dynamical systems can be constructed. Advantages and disadvantages of the different models are described. Stochastic differential equation models are derived for problems in chemistry, textile engineering, and epidemiology. Computational comparisons are made between the different stochastic models.  相似文献   

14.
We investigate two classes of essentially nonlinear boundary-value problems by using methods of the theory of dynamical systems and two special metrics. We prove that, for boundary-value problems of both these classes, all solutions tend (in the first metric) to upper semicontinuous functions and, under sufficiently general conditions, the asymptotic behavior of almost every solution can be described (by using the second metric) by a certain stochastic process. Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 6, pp. 810–826, June, 1999.  相似文献   

15.
Abstract

The limiting behavior of solutions to stochastic wave equations with singularities represented by stochastic terms is considered. In cases when the initial data are certain functionals of the smoothed white noise process, it is proved that the triviality effect appears. At the end of the paper, a concrete application of the smoothed positive noise is given.  相似文献   

16.
Abstract

In this article numerical methods for solving hybrid stochastic differential systems of Itô-type are developed by piecewise application of numerical methods for SDEs. We prove a convergence result if the corresponding method for SDEs is numerically stable with uniform convergence in the mean square sense. The Euler and Runge–Kutta methods for hybrid stochastic differential equations are specifically described and the order of the error is given for the Euler method. A numerical example is given to illustrate the theory.  相似文献   

17.
Nonlinear BSDEs were first introduced by Pardoux and Peng, 1990, Adapted solutions of backward stochastic differential equations, Systems and Control Letters, 14, 51–61, who proved the existence and uniqueness of a solution under suitable assumptions on the coefficient. Fully coupled forward–backward stochastic differential equations and their connection with PDE have been studied intensively by Pardoux and Tang, 1999, Forward–backward stochastic differential equations and quasilinear parabolic PDE's, Probability Theory and Related Fields, 114, 123–150; Antonelli and Hamadène, 2006, Existence of the solutions of backward–forward SDE's with continuous monotone coefficients, Statistics and Probability Letters, 76, 1559–1569; Hamadème, 1998, Backward–forward SDE's and stochastic differential games, Stochastic Processes and their Applications, 77, 1–15; Delarue, 2002, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Processes and Their Applications, 99, 209–286, amongst others.

Unfortunately, most existence or uniqueness results on solutions of forward–backward stochastic differential equations need regularity assumptions. The coefficients are required to be at least continuous which is somehow too strong in some applications. To the best of our knowledge, our work is the first to prove existence of a solution of a forward–backward stochastic differential equation with discontinuous coefficients and degenerate diffusion coefficient where, moreover, the terminal condition is not necessary bounded.

The aim of this work is to find a solution of a certain class of forward–backward stochastic differential equations on an arbitrary finite time interval. To do so, we assume some appropriate monotonicity condition on the generator and drift coefficients of the equation.

The present paper is motivated by the attempt to remove the classical condition on continuity of coefficients, without any assumption as to the non-degeneracy of the diffusion coefficient in the forward equation.

The main idea behind this work is the approximating lemma for increasing coefficients and the comparison theorem. Our approach is inspired by recent work of Boufoussi and Ouknine, 2003, On a SDE driven by a fractional brownian motion and with monotone drift, Electronic Communications in Probability, 8, 122–134; combined with that of Antonelli and Hamadène, 2006, Existence of the solutions of backward–forward SDE's with continuous monotone coefficients, Statistics and Probability Letters, 76, 1559–1569. Pursuing this idea, we adopt a one-dimensional framework for the forward and backward equations and we assume a monotonicity property both for the drift and for the generator coefficient.

At the end of the paper we give some extensions of our result.  相似文献   

18.
Belavkin  V. P. 《Mathematical Notes》2001,69(5-6):735-748
We prove that a single-jump unitary quantum stochastic evolution is unitarily equivalent to the Dirac boundary-value problem on the half-line in an extended space. It is shown that this solvable model can be derived from the Schrödinger boundary-value problem for a positive relativistic Hamiltonian on the half-line as the inductive ultrarelativistic limit corresponding to the input flow of Dirac particles with asymptotically infinite momenta. Thus the problem of stochastic approximation can be reduced to a quantum mechanical boundary-value problem in the extended space. The problem of microscopic time reversibility is also discussed in the paper.  相似文献   

19.
《随机分析与应用》2013,31(6):1385-1420
Abstract

The purpose of this paper is to transform a nonlinear stochastic partial differential equation of parabolic type with multiplicative noise into a random partial differential equation by using a bijective random process. A stationary conjugation is constructed, which is of interest for asymptotic problems. The conjugation is used here to prove the existence of the stochastic flow, the perfect cocycle property and the existence of the random attractor, all nontrivial properties in the case of multiplicative noise.  相似文献   

20.
ABSTRACT

We consider a one-dimensional model of neural activity, given by a piecewise smooth discontinuous map. Fold bifurcations as well as border collision bifurcations are described in detail. Using the method of stochastic sensitivity functions, noise-induced phenomena, such as transitions within attractor and between attractors, and spike generation, are described. Statistical characteristics of interspike intervals depending on noise intensity are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号