首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time–temperature superposition can be successfully applied to both the stress relaxation and dynamic mechanical properties of oriented PET fibers. Two curves result; one is the time dependence of the modulus at constant temperature, while the other is the shift, log aT, of this curve along the time scale as a function of temperature. This temperature dependence is less than that for both unoriented PET and typical amorphous polymers above Tg. It is about the same as that for oriented nylon 66 and unoriented glassy poly(methyl methacrylate). The isothermal modulus has the same time dependence as that of the unoriented PET; however, it is a factor of 3.3 larger. The modulus curve is almost identical in both shape and magnitude with that of oriented nylon 66. However, a temperature of 82°C. is required to place the viscoelastic dispersion region of PET at the same time scale as nylon 66 at 25°C. This temperature increase is the major difference in viscoelasticity between these two oriented polymers.  相似文献   

2.
3.
Drawn poly(ethylene terephthalate), PET, yarns have been heated for 1 min in silicone oil. The resulting samples were studied by x-ray diffraction and mechanical properties were measured. The results suggest that drawn PET consists of highly extended molecules essentially parallel to one another, with few folds present. On heating, chain folding occurs. This model is very similar to that proposed by Dismore and Statton for drawn nylon 66 yarns.  相似文献   

4.
5.
The shrinkage of commercial oriented poly(ethylene terephthalate) filaments was studied within the framework of the kinetic theory of rubberlike elasticity. Previous workers had found that the shrinkage and optical behavior of amorphous polymers could be satisfactorily explained in terms of this theory. Such an analysis is now applied to semicrystalline samples of moderate and high draw ratios (from 2× to 6×). It was found in this work that the thermal shrinkage force behavior as well as the optical anisotropy as a function of stretch can be explained in terms of the theory of rubberlike elasticity, if the following reasonable assumption is made: the average number of statistical segments per network chain in the noncrosslinked sample increases as a function of the draw ratio. A possible mechanism for such behavior is the relaxation of some of the chain entaglements due to the strain imposed externally on the fiber.  相似文献   

6.
The transport of oxygen through oriented PET at 25 and 60°C has been studied using the dynamic diffusion method. It did not prove possible to determine the diffusion and solubility coefficients with reasonable accuracy, and only the permeability coefficients are discussed in terms of the structure of the samples. The results suggest that the lowering of the oxygen permeability on drawing is related to the production of additional material with the trans conformation of the glycol residue, either in crystallites or in amorphous regions, rather than solely to the overall development of orientation or crystallinity.  相似文献   

7.
The surface-deformation characteristics of uniaxially drawn poly(ethylene terephthalate) (PET) film were successfully evaluated with multiline scratch tests using scanning probe microscopy (SPM) on a nanometer scale. The PET film was prepared by compression molding from the melt, followed by quenching in ice water. The obtained amorphous film was drawn uniaxially below its glass-transition temperature, and the resultant surface roughness could be reduced to within 5 nm. A multiline scratch with the Si(3)N(4) tip of an SPM on the oriented PET surface was made parallel and perpendicular to the drawing axis under applied loads of 5-30 nN. The perpendicular scratching generated a characteristic periodic pattern on the film surface, but the parallel scratching induced a tearing of the surface. These results suggest that surface-deformation mechanisms were dominated by molecular anisotropy. The surface-deformation properties, as evaluated from scratch-angle dependences on morphological changes on a nanometer scale, were similar to the mechanical properties of the bulk.  相似文献   

8.
The spherulite morphology and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). The thermal analysis showed that PET and PTT were miscible in the melt over the entire composition range. The rejected distance of non-crystallizable species, which was represented in terms of the parameter δ, played an important role in determining the morphological patterns of the blends at a specific crystallization temperature regime. The parameter δ could be controlled by variation of the composition, the crystallization temperature, and the level of transesterification. In the case of two-step crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with PTT crystals. The spherulitic surface of the PET crystals acted as nucleation sites where PTT preferentially crystallized, leading to the formation of non-spherulitic crystalline texture. The SALS results suggested that the growth pattern of the PET crystals was significantly changed by the presence of the PTT molecules. The lamellar morphology parameters were evaluated by a one-dimensional correlation function analysis. The blends that crystallized above the melting point of PTT showed a larger amorphous layer thickness than the pure PET, indicating that the non-crystallizable PTT component might be incorporated into the interlamellar region of the PET crystals. With an increased level of transesterification, the exclusion of non-crystallizable species from the lamellar stacks was favorable due to the lower crystal growth rates. As a result, the amorphous layer thickness of the PET crystals decreased as the annealing time in the melt state was increased.  相似文献   

9.
The polarized electronic spectrum of oriented poly(ethylene terephthalate) (PET) sheets was obtained from the specular reflection spectrum using the Kramers-Kronig relationship. The surface orientation function of drawn and drawn/annealed PET sheets was determined from the dichroic ratio of the second π* ← π transition observed at 41,000 cm-1. The bulk orientation functions in the crystalline and amorphous regions were evaluated from wide-angle X-ray diffraction and sonic modulus measurements. On annealing of drawn PET sheets, the crystalline orientation and crystallinity were much improved, but the amorphous orientation function showed a minor decrease. The overall molecular orientation in the surface of the drawn PET sheet was shown to be approximately equivalent to the molecular orientation in the bulk.  相似文献   

10.
Two distinguishable effects of thermal exposure of biaxially oriented poly(ethylene terephthalate) (PET) have been observed in the temperature range from room temperature to 140°C. Upon heating above the glass transition temperature Tg of the film an irreversible shrinkage of a few percent occurred with a concomitant decrease in the rate of creep. Some loss of orientation in the noncrystalline phase with an attendant slight increase in density is believed to be responsible. Since the film was anisotropic in its plane, different amounts and rates of shrinkage were observed along with differing thermal expansion coefficients in various directions relative to the primary optic axis. Upon cooling the 50% crystalline PET from above Tg to lower temperatures, reversible “physical aging” was observed. Creep rates were found to decrease with the residence time below Tg. As with purely amorphous polymers, the effects of the aging are removed by heating the specimen above Tg where the density of the amorphous phase achieves equilibrium values.  相似文献   

11.
The gas barrier properties of a wide range of biaxially oriented polyethylene terephthalate films have been investigated. The permeability and diffusion coefficients for oxygen and water vapor transmissions were determined for films prepared by both simultaneous and sequential biaxial stretching. The effect of annealing was also studied and a comparison made with previous results for uniaxially oriented films. It was found that the permeability correlated well with the density of the sample, but that the dependence on the gauche/trans conformer ratio shown for uniaxial material was not so clear. A good empirical correlation was also obtained between permeability and a proposed measure of molecular orientation obtained from refractive index measurements. A more detailed interpretation, based on infrared measurements of orientation, showed that there is a systematic reduction in permeability as the planes of the terephthalate residues become parallel to the film surface.  相似文献   

12.
The anisotropy of the α and β relaxations in oriented poly(ethylene terephthalate) has been studied by dynamic mechanical and dielectric relaxation measurements. The α relaxation shows considerable mechanical anisotropy but gives rise to an isotropic dielectric process. The β relaxation, on the other hand, shows pronounced dielectric anisotropy but very little mechanical anisotropy. The implication of these results with regard to possible interpretations of the relaxations are discussed.  相似文献   

13.
This paper presents a procedure for simulating the anisotropic small-strain mechanical properties of oriented amorphous poly(ethylene terephthalate) (PET) starting from an atomistic level. A technique for producing oriented amorphous simulation cells of glassy PET has been developed and closely examined against related structural and property measurement data. The simulated elastic constants of these cells, derived by energy minimisation and molecular dynamics strain fluctuation methods, show encouraging agreement with experimental data.  相似文献   

14.
The photolysis of poly(ethylene terephthalate) films was studied in vacuo with light of wavelengths 2537 and 3130 A. A very stable filter system which cuts out the 3025 A. line was developed to isolate 3130 A. from a mercury spectrum. Despite the fact that the penetration of 2537 A. light was limited to a depth of a ca. 103 A. whereas 3130 A. light was more uniformly absorbed it was possible to demonstrate that the quantum yields for CO and CO2 formation were in agreement for the two wavelengths. Quantum yields for fractures and crosslinks were estimated by sol-gel analysis. An absorption maximum which develops near 13 μ after exposure of poly(ethylene terephthalate) to light or γ-rays was attributed to the formation of groups formed by elimination of CO and CO2. ESR spectra for trapped radicals were tentatively assigned to the components p-C6H3· and ·O? CH2? CH2? . It is suggested that the former radicals combine to form crosslinks. Quantum yields (× 104) with 3130 A. light are: CO, 6; CO2, 2; crosslinks, 5.5; trapped radicals, 1.5; With 2537 A. light, quantum yields are: CO, 6–9; CO2, 2–3; the network formed was not characterized as to crosslinks and fractures; trapped radicals were observed to exist but not determined.  相似文献   

15.
The nature of crystallization- and mobility-induced changes during annealing of melt-spun poly(ethylene terephthalate) precursor fibers of a range of orientations has been examined. The kinetics of crystallization and the accompanying orientational changes have been studied under conditions of constant, low tensile stress, with the accompanying dimensional changes and under a constraint against shrinkage in length, with the stress developed being monitored. The effects of precursor orientation and externally imposed constraints on the course of the fundamental crystallization and orientational relaxation processes are revealed. Oriented crystallization has been shown to have a significant effect on the stress developed and on the dimensions of oriented precursor fibers, with a strong tendency to spontaneously extend as a consequence of the reorientation of crystallizing segments predominantly along the preferred fiber direction. The sequence in which crystallization and major orientational relaxation, if any, occur is found to have a profound effect on the structure and thus the deformability of oriented fibers after annealing above the glass transition temperature.  相似文献   

16.
17.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

18.
We describe the organocatalytic depolymerization of poly(ethylene terephthalate) (PET), using a commercially available guanidine catalyst, 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). Postconsumer PET beverage bottles were used and processed with 1.0 mol % (0.7 wt %) of TBD and excess amount of ethylene glycol (EG) at 190 °C for 3.5 hours under atmospheric pressure to give bis(2‐hydroxyethyl) terephthalate (BHET) in 78% isolated yield. The catalyst efficiency was comparable to other metal acetate/alkoxide catalysts that are commonly used for depolymerization of PET. The BHET content in the glycolysis product was subject to the reagent loading. This catalyst influenced the rate of the depolymerization as well as the effective process temperature. We also demonstrated the recycling of the catalyst and the excess EG for more than 5 cycles. Computational and experimental studies showed that both TBD and EG activate PET through hydrogen bond formation/activation to facilitate this reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The effect of various metal salts as nucleating additives for poly(ethylene terephthalate) (PET) has been investigated. In the case of sodium benzoate and probably for all other effective nucleating additives, the nucleation process can be divided into a “heterogeneous particle nucleation” performed by the unreacted salt and a “homogeneous nucleation” due to the polymer–sodium (metal) salt formed during the extrusion. This polymer–sodium (metal) salt is the major nucleating agent in these systems. We have also shown the fundamental difference between the concept of a nucleating additive and that of a nucleating agent.  相似文献   

20.
In the existing literature various values are given for the intrinsic birefringence of the crystalline and the amorphous phases in poly(ethylene terephthalate) (PET). These values have either been calculated theoretically or obtained from experimental data on the basis of certain models. In this investigation, using the Samuels two-phase model which correlates sonic modulus with structural parameters, intrinsic birefringence values for the crystalline (Δnc) and amorphous (Δna) phases have been determined by studying 30 PET samples prepared by heat setting to have a wide range of structures; the results are Δnc = 0.29 and Δna = 0.20. These values are discussed along with others in the literature and it is concluded that in the light of the present work, the values used by many authors need reexamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号