首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental scanning electron microscopy was used to image meniscus formation between an AFM tip and a surface. At high relative humidity, 70%-99%, the meniscus formed is 100 to 1200 nm in height, orders of magnitude larger than predicted by the Kelvin equation using spherical geometry. The height of the meniscus also demonstrates hysteresis associated with increasing or decreasing relative humidity.  相似文献   

2.
3.
4.
Physicochemical properties of ultrafiltration membranes were studied by scanning electron microscopy. The membrane elemental composition (carbon, oxygen, and sulfur) was determined by energy dispersion analysis. The elements were shown to be homogeneously distributed along the membrane. A homogeneous pore distribution on the membrane surface was found after covering it with a thin gold layer. The pore sizes are 50 nm. The topographic analysis of the permeate-side of the membrane indicated its anisotropy.  相似文献   

5.
6.
The resolving power of high-resolution scanning electron microscopy was judged using topographical height data from atomic force microscopy in order to assess the technique as a tool for understanding nanoporous crystal growth.  相似文献   

7.
The use of scanning electron microscopy for direct observation of the effects of surface roughness on the spreading of liquids is described, making it possible to view moving liquid drops at distances less than 1 μm from the advancing contact line. Various surfaces were examined including several with simple forms of roughness which can assist in explaining the behavior of more complex surfaces. Spreading is shown to be highly dependent on the orientation and texture of the roughness; in particular, the presence of sharp edges of step height 0.05 μm are shown to influence spreading significantly. These observations reinforce our previously stated doubts of the significance of conventionally measured macroscopic contact angles.  相似文献   

8.
It is shown that the environmental scanning electron microscope is the natural extension of the scanning electron microscope. The former incorporates all of the conventional functions of the latter and, in addition, it opens many new ways of looking at virtually any specimen, wet or dry, insulating or conducting. The environmental scanning electron microscope is characterised by the possibility of maintaining a gaseous pressure in the specimen chamber. All operational parameters can be varied within a range which is a function of pressure. It can be used with all types of gun and all basic modes of detection and, hence, it can be applied both to morphological and to microanalytical studies. It has opened many novel ways of looking at specimens and phenomena not previously accessible with scanning electron microscopy.  相似文献   

9.
Summary A method is described for the characterization and the classification according to shape of microscopic objects by automated SEM. The classification is performed by a hierarchical cluster analysis on a set of Fourier coefficients that are calculated from a set of radii, measured between a well defined centroid point and the contour lines of the object. This method is incorporated in existing commercial software for automated X-ray and size analysis of airborne particulate matter (PRC, Tracor Northern). Two examples demonstrate the possibilities and limitations of this method.
Morphologische Charakterisierung mikroskopischer Objekte mit Hilfe der Raster-Elektronenmikroskopie
Zusammenfassung Eine Methode für die Charakterisierung und Klassifizierung mikroskopischer Objekte nach ihrer Form durch automatische Raster-Elektronenmikroskopie wurde beschrieben. Die Klassifizierung wird mittels einer hierarchischen Clusteranalyse unter Verwendung eines Satzes von Fourier-Koeffizienten durchgeführt, die aus einem Satz von Radien — gemessen zwischen einem exakt definierten Mittelpunkt und den Konturlinien der Objekte — berechnet werden. Diese Methode wird in eine kommerziell erhältliche Software für automatische Röntgen- und Größenverteilungs-analyse von luftgetragenen Staubteilchen eingebaut (PRC, Tracor Northern). An Hand von Beispielen werden die Möglichkeiten und Limitierungen dieser Methode dargestellt.
  相似文献   

10.
The possibility of using a scanning electron microscope (SEM) for studying the morphology of mechanical polymer blends was investigated. Compounds of SBS/EPDM, and both filled and unfilled NBR/EPDM were tested. OsO4-stained thin-sections were also examined in a transmission electron microscope (TEM) and the results were compared.It seemed to be quite possible to use atomic number contrast detection in combination with OsO4 staining for visualizing the morphology of the blends in SEM. Domains as small as 0·1 μm were clearly seen. This was done by means of a Robinson backscattered electron detector. Sample preparation was easy, 2 mm thick rubber plates were cut on dry ice to obtain a smooth surface. After staining, the samples were coated with a thin conductive carbon layer.The inner structures of SBS and the carbon black particles were not resolved in SEM but were easily seen in TEM.  相似文献   

11.
Partially polymerized TS and HD-Ph crystals were irradiated through a two-dimensional grid by UV light. Surface structure which appears after dissolving unreacted monomer indicates that polymer chains grow into unirradiated crystal areas. From the etch profile the average chain length is ≈5 μm. A quantum yield ≈10?4 for chain initiation via excitation of the singlet is deduced.  相似文献   

12.
Different gold surfaces modified by carbon-spray have been investigated by scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM). A transformation of the SECM image to a distance-location profile is proposed which assists the correlation of both images. The structures found in the transformed SECM images of carbon-spray layers on gold substrates can be explained by the topographic features visible in the SEM pictures. Tempering the carbon spray results in an increased density of electrochemically reactive carbon particles which could be confirmed by cyclic voltammetric investigations. Gold minigrids modified with carbon spray expose some areas of especially large currents which could not be predicted from their SEM images. This effect may result from particles located at the edge of a wire intersection having relatively large active surfaces per particle. They contribute significantly to the total current of the minigrid.  相似文献   

13.
A comparative study of scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging of the healthy human optic nerve was carried out to determine the similarities and the differences. In this study we compared the fine optic nerve structures as observed by SEM and AFM. The fibers of the right optic nerve of a 61-year-old man show different arrangements in transverse sections taken from the same individual 5 mm central to the optic canal and 5 mm peripheral to the optic chiasma; this difference can be recognized by light microscopy (LM), SEM, and AFM. AFM revealed such typical optic nerve fibers (taken from a point 5 mm central to the optic canal) with annular and longitudinal orientations, which were not visible by SEM in this form. By contrast, LM and SEM visualized other structures, such as pia mater and optic nerve fibers loosely arranged in bundles, none of which was visualized by AFM. The images, however, taken 5 mm peripheral from the optic chiasma show shapeless nerve fibers having a wavy course. Our results reveal that more detailed information on optic nerve morphology is obtained by exploiting the advantages of both SEM and AFM. These are the first SEM and AFM images of healthy human optic nerve fibers, containing clear representations of the three dimensions of the optic nerve.  相似文献   

14.
Using scanning transmission electron microscopy we image ~4 nm platinum nanoparticles deposited on an insulating membrane, where the membrane is one of two electron-transparent windows separating an aqueous environment from the microscope's high vacuum. Upon receiving a relatively moderate dose of ~10(4) e/nm(2), initially immobile nanoparticles begin to move along trajectories that are directed radially outward from the center of the field of view. With larger dose rates the particle motion becomes increasingly dramatic. These observations demonstrate that, even under mild imaging conditions, the in situ electron microscopy of aqueous environments can produce electrophoretic charging effects that dominate the dynamics of nanoparticles under observation.  相似文献   

15.
We present a comprehensive investigation of the volume transition in thermosensitive core-shell particles. The particles consist of a solid core of poly (styrene) (radius: 52 nm) onto which a network of crosslinked poly(N-isopropylacrylamide) (PNIPAM) is affixed. The degree of crosslinking of the PNIPAM shell effected by the crosslinker N,N -methylenebisacrylamide was varied between 1.25 and 5 mol%. Immersed in water, the shell of these particles is swollen at low temperatures. Raising the temperature above 32°C leads to a volume transition within the shell. Cryogenic transmission electron microscopy (Cryo-TEM) and dynamic light scattering (DLS) have been used to investigate the structure and swelling of the particles. The Cryo-TEM micrographs directly show inhomogeneities of the network. Moreover, a buckling of the shell from the core particle is evident. This buckling increases with decreasing degree of crosslinking. A comparison of the overall size of the particles determined by DLS and Cryo-TEM demonstrates that the hydrodynamic radius provides a valid measure for the size of the particles. The phase transition within the network measured by DLS can be described by the Flory–Rehner theory. It is shown that this model captures the main features of the volume transition within the core-shell particles including the dependence of the phase transition on the degree of crosslinking. All dispersions crystallize at volume fractions above 0.5. The resulting phase diagram is identical to the phase behavior of hard spheres within the limits of error. This demonstrates that the core-shell microgels can be treated as hard spheres up to volume fractions of at least 0.55.  相似文献   

16.
We report freeze-fracture transmission electron microscopy (FFTEM) and scanning electron microscopy (SEM) studies of films prepared by melt-pressing micrometer-size polystyrene (PS) and poly(methyl methacrylate) (PMMA) latex samples prepared by surfactant-free emulsion polymerization. Film samples were prepared in two ways intended to influence the nature of packing in the solid: slow evaporation of water at 40°C and 1 atm, or freezedrying. These powder samples were then gently pressed into transparent films using a Carver press. Samples prepared from freeze-dried latex are much less ordered then those from slowly dried dispersions. Two kinds of close packing, face-centered cubic (fcc) and body-centered cubic (bcc), may exist in different parts of an individual sample. An excellent example of bcc ordering was observed in a sample prepared by slowly drying a PMMA latex dispersion. Under very similar conditions, small regions of both fcc and bcc ordering were observed in PS samples. However, distortion of ideal bcc or fcc packing produces the same pattern of fracture. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
18.
Previously, we studied a variety of ionomer morphologies with scanning transmission electron microscopy (STEM). Other groups have found that deconvoluting STEM images dramatically improve the overall image quality and the detection of sub‐nanometer‐scale features. In this study, STEM images of nanometer‐scale ion‐rich aggregates were deconvolved via the Pixon method with a simulated electron probe. The image models are considerably sharper with significantly decreased noise levels, thus making the size and shape of the ionic aggregates easier to distinguish relative to those in the raw STEM images. Raw and deconvoluted images of Zn‐neutralized poly(styrene‐ran‐methacrylic acid) ionomers containing spherical ionic aggregates indicate that the electron density varies smoothly from the edge to the center of the aggregates. Deconvolution also clarifies the issue of aggregate overlap in the STEM images. Furthermore, line scans across deconvoluted STEM images suggest that the three‐dimensional density distribution of these nanoaggregates compares favorably with a radially symmetric Gaussian distribution as opposed to a uniformly dense sphere. The overall result of this work is that deconvolution of STEM images provide ways in which to better investigate the morphologies of ionomers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 319–326, 2003  相似文献   

19.
Individual polyethylene molecules have been imaged in the electron microscope. Preparative difficulties are overcome by the following procedures. (1) The polymer is dissolved in n-hexadecane at 130°C; (2) the solution is deposited on a cooled substrate by spraying in an atmosphere of cold nitrogen; (3) the deposited polymer molecules were shadowed by platinum. Molecular weights obtained are in good agreement with those from light scattering.  相似文献   

20.
A theory of fully adiabatic dissociative electrochemical processes of the electron transfer that are induced by scanning tunneling microscopy is constructed. Adiabatic free energy surfaces are calculated and properties of their symmetry are examined under various conditions. Diagrams of kinetic regimes, which characterize possible kinetic processes, which may proceed in the system under consideration, are constructed in the space of model parameters. Dependence of activation free energy on the bias voltage, overvoltage, physical properties of a molecule, and intensity of interaction of a molecule with an electrode and the tip of the scanning tunneling microscope is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号