首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this investigation on samples of high- and low-density polyethylene and ethylene-vinyl acetate copolymers, crystallinities ?W and crystalline densities ρcW were obtained with the aid of wide-angle x-ray scattering (WAXS) methods. From small-angle x-ray scattering (SAXS) the following characteristics were obtained either directly or by combination with the WAXS data: values, or limiting values, of the crystallinity ?S; crystal densities ρcS; thicknesses of the diffuse boundary layer; number-average thicknesses of the crystalline and amorphous layers; and both number and weight averages of the long periods. It was shown that a discrepancy between ?S and ?W cannot be attributed to the occurrence of large amorphous regions outside the regular stacks of lamellae; the data were reconciled by assuming that the WAXS crystallinities pertain to the cores of the crystalline lamellae, whereas part of the diffuse boundary layers is comprised in the values of ?S. The ρcW and ρcS data of the nonlinear samples show systematic differences, which were attributed to partial incorporation of side groups in the crystalline regions at a concentration estimated to be of the order of 20–40% of the overall concentration. With increasing side-group concentration, the thickness of the core of the crystalline lamellae was found to approach the average length of the linear chain segments between side groups. On the basis of these observations a scheme for the crystallization of nonlinear polyethylene is proposed according to which a number of side groups is encapsulated by the growing crystal. The data can be explained by assuming that all chains, offered at a crystal face where growth takes place, crystallize directly, irrespective of whether the crystallizing stem carries a side group. Further crystallization would then proceed by chain folding at both ends of the first stem, until a noncrystallizable unit is met. In this scheme, allowance is made for about half the stems in the crystals to be connected by folds; this is required in view of the “overcrowding” effect. Finally, the effect of cooling rate and molecular weight on the thicknesses of the crystalline and amorphous layers is discussed, and differences between the amorphous densities of high-and low-density polyethylene are noted.  相似文献   

2.
Polyesteramide 6NT6–polytetramethylene ether glycol (PTMEG) copolymers, precipitated from dilute solution, have been studied by small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) with variation of the PTMEG content. A comparison of the structural characteristics of these materials has been made with those of the 6NT6 homopolymer. Chain folding is assumed as the crystallization mechanism for the low-PTMEG-content copolymers, with possible inclusion of polyether segments within the 6NT6 crystal lattice. WAXS data support the view of a weakening of the 6NT6 crystalline packing in the equatorial planes as the reason for broadening of the diffraction peaks, for changes in their relative intensities, and for the increase in the equatorial interplanar distances in the high-PTMEG-content samples. The annealing behavior has also been investigated.  相似文献   

3.
The crystalline structures of “microlayer” and “nanolayer” polyethylene have been examined in coextruded films comprised of alternating layers of high-density polyethylene and polystyrene. Transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), and wide-angle x-ray scattering (WAXS) reveal that microlayer polyethylene, where the layer thickness is on the order of several microns, crystallizes with the normal unoriented lamellar morphology. In nanolayer films, where the film thickness of tens of nanometers is on the size scale of molecular dimensions, lamellae are oriented with the long axes perpendicular to the extrusion direction in a row-nucleated morphology similar to structures described in the literature. The lamellae are partially twisted about the long axes. The preferred twist angles of ±40° orient the lamellar surfaces normal to the layer surface. The row-nucleated morphology imparts highly anisotropic mechanical properties to the nanolayer polyethylene.  相似文献   

4.
 Transesterification products – copolymers of semiflexible liquid crystalline polymer SBH 112 grafted to functionalized low molecular mass polyethylene (PEox) obtained by melt polycondensation or reactive blending procedures have been investigated by wide-angle x-ray scattering (WAXS) and scanning electron microscopy (SEM). The x-ray diffraction patterns of PE-g-LCP copolymers obtained via both procedures consist of reflections typical for the orthorhombic crystalline lattice of PE and the single reflection of the solid LCP. The lack of d hkl variations with respect to those of neat PEox and SBH indicates the absence of interactions in the crystalline phase or that of cocrystallization phenomena between the components of the PE-g-SBH copolymers. The analysis of the crystallinity degree and normalized amorphous and crystalline contributions to the diffraction patterns of the products suggests that both copolymer components are partly miscible in the amorphous phase. The extent of miscibility depends on the copolymer structure, namely on the length of PE segments and SBH grafts. PE segments in PE-g-SBH copolymers obtained by the reactive blending are longer and exhibit a higher crystallizability than those obtained via melt polycondensation. SBH grafts of the copolymers obtained by the reactive blending are also longer than those in the products obtained via melt polycondensation. The morphology of the samples has been interpreted as determined by the different structure of the copolymers obtained by both procedures. Received: 3 April 1996 Accepted: 15 August 1996  相似文献   

5.
The following quantities were measured on a number of ethylene–vinyl acetate (EVA) and ethylene–acrylic acid (EAA) copolymers: (1) the small-angle x-ray scattering invariant, (2) the overall density, and (3) the crystallinity. Assuming a two-phase structure, the separate values of the densities of the crystalline and amorphous regions can be calculated from these data. Of these, the crystalline density is compared with the value obtained from the lattice constants. A systematic difference is observed which is ascribed to the presence of comonomeric side groups in the crystalline regions. For the EVA and EAA samples, their concentration is at least 0.3 and 0.5 times the overall concentration, respectively. The amorphous densities are found to be higher than the values calculated from completely amorphous copolymers by extrapolation procedures.  相似文献   

6.
The present work is concerned with the study of the crystalline morphology and the nanostructure of a multilayered system of two alternating immiscible semicrystalline polymers: isotactic polypropylene (iPP) and polyamide 6 (PA6). Films with a volume ratio of 70/30 were prepared by means of layer multiplying coextrusion. Contrary to previous experiments, performed with semicrystalline/amorphous and amorphous/amorphous nanolayered systems, the studied iPP/PA6 film does not exhibit a well defined maximum in the USAXS patterns. This result accounts for an irregular layered structure, as further confirmed by means of TEM images. Nevertheless, such a layered assembly still influences the crystallization behaviour of both constituent polymers. On the one hand, the crystallization of PA6 within the multilayered material is substantially hindered as evidenced by its weak scattering intensity. Real time studies as a function of temperature undoubtedly detect the presence of a WAXS peak and a SAXS maximum associated to PA6 above the melting temperature of iPP. Room temperature AFM studies also confirm the occurrence of crystalline structures within the PA6 layers. On the other hand, SAXS and WAXS measurements at room temperature reveal the occurrence of an oriented lamellar morphology within the iPP layers bearing uniaxial symmetry around an axis perpendicular to the layers surface. Results show that the crystalline molecular chains are placed mainly parallel to the layer surfaces forming edge-on lamellae. Moreover, X-ray scattering results are in agreement with the occurrence of two populations of lamellae, both edge-on and perpendicular to each other, in agreement with the crosshatched morphology observed by AFM.  相似文献   

7.
The rigid amorphous phase of semicrystalline poly(phenylene sulfide) (PPS) has been studied as a function of thermal history using scanning calorimetry, dielectric relaxation, density, and small-angle x-ray scattering (SAXS). Based on the new heat of fusion of perfect crystalline PPS, which is 26.7±0.8 cal/gram, the weight fraction of rigid amorphous phase is shown to be nearly twice as large as previously reported [1]. The mass fraction of the rigid amorphous phase ranges from 0.24 to 0.42 and is dependent upon thermal treatment. We have taken the approach of assuming a three-phase model for the morphology of semicrystalline PPS consisting of crystalline lamellae, mobile amorphous, and rigid amorphous components. Using this three-phase model, we determine that the average density of the rigid amorphous fraction is 1.325 g/cc, which is slightly larger than the density of the mobile amorphous phase fraction and was insensitive to thermal history. From the SAXS long period, the layer thicknesses of the mobile amorphous phase, rigid amorphous phase, and crystal lamellae were estimated. Only the lamellar thickness shows a systematic variation with thermal history, increasing with melt or cold crystallization temperature, or with decreasing cooling rate.  相似文献   

8.
The microphase structure of a series of polystyrene‐b‐polyethylene oxide‐b‐polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid‐state NMR, DSC, wide and small angle X‐ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene‐oxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and 1H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 55–64, 2010  相似文献   

9.
Small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) as well as small-angle light-scattering (SALS) techniques have been applied to investigate the microstructure of a number of commercial poly(vinyl chloride) (PVC) samples. From the wide-angle x-ray scattering, crystallinity and crystal size parameters have been determined. The crystallinity of the samples investigated range from 5% to 10%. Superstructure parameters such as crystallite thickness, distribution functions of crystallite and amorphous thicknesses, and size of ordered regions have been obtained by an analysis of the SAXS curves using the cluster model. The crystallinity agrees well with the WAXS crystallinities indicating that most of the crystals are lamellar shaped, though some rodlike entities are present in the sample as is shown by the small-angle light scattering. From the SAXS analysis, the microstructure is described as clusters of lamella stacks which are identical with the subprimary particles. Their size is determined to be 220–240 Å. Emulsion type PVC also contains lamellar-shaped crystals. The superstructure, however, of this type of PVC is different from that of mass or suspension-polymerized material. The SAXS curve does not reveal any correlation between the crystals.  相似文献   

10.
用小角/广角X射线散射(SAXS/WAXS)联用的实验方法考察了等温结晶温度(Tc)和等温时间对聚(ε-己内酯)(PCL)片晶形态的影响.根据WAXS数据计算了PCL的重量结晶度,进而求得其体积结晶度Vc(WAXS).在不同Tc下结晶的PCL样品的Vc(WAXS)均略高于50%.对SAXS谱线做一维相关函数(1DCF)分析,得到了PCL的片晶长周期(LP)和无定形层厚度(La).通过比较WAXS及SAXS的数据分析结果,认为PCL晶体需用"三相模型"予以描述,其过渡层厚度(E)约为LP的15%~18%,对片晶形态具有重要影响.随着Tc升高,PCL晶体的Lc、La及E均逐渐增大,但Lc的变化率最大,这使得结晶度上升.在50℃等温结晶不同时间,发现Lc随延长时间显著增加,而La及E则不断减小.等温10天后,PCL晶体的SAXS谱线上可观察到5级散射,表明片晶相当完善.  相似文献   

11.
The morphology and thermomechanical properties of well-defined polyethylene-graft-poly(n-butyl acrylate) (PE-g-PBA) copolymers prepared via atom transfer radical polymerization were investigated. Differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), wide angle X-ray scattering (WAXS), dynamic mechanical measurement and large deformation tensile tests were performed on the graft copolymers and the results were compared with the behavior of the polyethylene macroinitiator. The existence of both crystalline polyethylene segments and amorphous poly(n-butyl acrylate) segments in the copolymers leads to microphase separation and unique thermomechanical behavior. Strong microphase separation was observed by DSC and X-ray diffraction studies. Correlation of morphology and thermomechanical properties was also studied using dynamic mechanical measurement and large deformation tensile tests.Dedicated to Prof. E. W. Fischer on the occasion of his 75th birthday  相似文献   

12.
本系列工作的此部分系用小角激光光散射,小角χ光散射,广角χ光衍射等技术考察了高密度聚乙烯的球晶、片晶和微晶等宏观和微观结构在不同辐照条件下的行为和变化,发现辐照交联对聚乙烯球晶结构有保持效应,且这种效应随辐照剂量的增大而加强;辐照交联对聚乙烯的片层结构也有保持效应,但对片晶内部却有破坏效应,辐照导致了聚乙烯结晶的晶胞膨胀,用"片晶内部破坏"机理解释χ光小角散射积分不变量随辐照剂量单调下降比用"片晶表面破坏"机理解释更为合适。  相似文献   

13.
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements. SAXS and WAXS patterns of high‐density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 °C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
Molecular aggregation in polytrimellitamideimide (PAI) was investigated by small-angle x-ray scattering (SAXS). PAI films annealed above the glass transition temperature show a scattering peak characteristic of two-phase structure. A one-dimensional model was used to analyze these SAXS curves. The more ordered phases are produced at higher annealing temperature. The average thickness of the ordered lamellae is comparable with the repeating length of the main chain. The relative difference of electron density between two phases is only a few percent, which shows that the two-phase structure of PAI, like that of aromatic polyimide, differs essentially from that of ordinary crystalline polymers.  相似文献   

15.
Understanding nanoparticle-formation reactions requires multi-technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y(2)O(3) equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub-nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit-cell dimensions. At yttria-doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time-resolved nanoparticle size distributions are calculated based on whole-powder-pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle-size distributions occur. In situ total scattering provides structural insight into the sub-nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six-coordinated zirconium atoms in the initial amorphous clusters to eight-coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration.  相似文献   

16.
Melt-spun poly(ethylene terephthalate) fibers were isothermally heat-treated at constant length. Microstructural changes occurring during the heat-treatment were monitored using specific gravity, wide-angle x-ray scattering (WAXS), small-angle x-ray scattering (SAXS), optical birefringence, and static mechanical testing. Major changes in the density of the most highly oriented fiber examined occurred in times below 100 ms. For less oriented fibers, the time scale for significant density change increases to the 1–10 s range. The course of birefringence increase approximates that of the density. WAXS measurements show that crystallinity develops at essentially constant crystal perfection, but that the orientation of the crystallites first decreases and then increases with time. SAXS results show development of a four-point pattern, the azimuthal angle of the lobes decreasing with initial orientation, with temperature, and with time. A streak transverse to the fiber axis develops more rapidly than do the lobes. A two-stage transformation process is envisaged, the first stage being the formation of defective crystal fibrils and the second being internal rearrangement of the fibrils to form more perfect crystallites, separated by more amorphous zones. Changes in the crystallite orientation are related to constraints of the noncrystalline material on the crystallites.  相似文献   

17.
The main-chain thermotropic liquid-crystalline poly(heptane-1,7-diyl biphenyl-4,4′-dicarboxylate) (P7MB) was investigated by time-resolved small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and differential scanning calorimerty (DSC). Nonisothermal crystallisation with different rates of cooling and heating was used. On cooling, two phase transitions are observed, isotropic melt - smectic (I-Sm) and Sm- three-dimensional crystalline structure (Sm-Cr), whereas on heating only one transition is observed, Cr-I transition. The transition enthalpies were calculated. Temperature dependences of d-spacings of all crystalline peaks and of the peak observed at high values of scattering vector in the SAXS region were derived. The temperature dependence of the degree of crystallinity was established, based on the integrated intensities of the crystalline peaks and amorphous halo in WAXS.  相似文献   

18.
Understanding nanoparticle‐formation reactions requires multi‐technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small‐angle X‐ray scattering (SAXS)/wide‐angle X‐ray scattering (WAXS)/total‐scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria‐stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub‐nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit‐cell dimensions. At yttria‐doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time‐resolved nanoparticle size distributions are calculated based on whole‐powder‐pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle‐size distributions occur. In situ total scattering provides structural insight into the sub‐nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six‐coordinated zirconium atoms in the initial amorphous clusters to eight‐coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration.  相似文献   

19.
Time-resolved and off-line synchrotron wide-angle and small-angle x-ray scattering (WAXS and SAXS) was used to study the structure formation in poly-p-phenylenebenzobisoxazole (PBO) fibers during various stages of spinning, coagulation, and heating processes. WAXS data could be explained in terms of liquid-crystalline structures of varying degrees of order. A structure model is proposed that is in accordance with the observed SAXS four-point pattern.  相似文献   

20.
Wide-angle x-ray scattering (WAXS) and Raman spectroscopic data show that on both the crystal and molecular levels, a bimodal stress distribution exists in strained high-performance polyethylene fibers. In part of the crystalline PE the microscopic strain level is high (ca. 70% of macroscopic strain); in the remainder, the microscopic strain level is low (independent of macroscopic strain, ca. 0.4%). During stress relaxation the fraction of highly strained PE decreases with time. WAXS revealed no indication of a change in the a and b unit-cell dimensions. Furthermore, no indications for stress-induced formation of monoclinic and/or hexagonal PE and for crystal breaking were found. From the latter it can be deduced that all chains within one crystal are equally strained. The WAXS results are used to calibrate the stress-induced frequency shifts of Raman bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号