首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallization during polymerization of p-xylylene from the gas phase has been studied between 200 and ?196°C. From room temperature to ?17°C the polymer crystal morphology changes in that the crystallinity decreases. In this range the process is thought to be of the successive polymerization and crystallization type. The morphology is in agreement with this mechanism, of the folded-chain β-polymorph type with proper epitactic orientation of the chains with respect to the support surface. At ?78°C an intermediate, poorly crystallized polymer results. At 196°C the reaction is most likely of the simultaneous polymerization and crystallization type. The morphology is, in agreement with the changed mechanism, of a metastable, irregularly folded β-polymorph type with no orientation of the chains relative to the support surface. No significant changes in molecular weight were observed in the polymers produced between 26 and ?196°C.  相似文献   

2.
Polymerization of p-xylylene was carried out from the gas phase with monomer produced by the pyrolysis of [2,2]-p-cyclophane. The crystalline form and preferred orientation of as-polymerized polymer deposited at various temperatures (?196 to 80°C) were investigated by x-ray diffraction methods. The melting behavior and other thermal transitions were studied by DSC. At 80°C the polymer film deposit is a mixture of the α and β forms, while between 60 and 0°C the deposit is of the α form. At lower temperature the polymer deposit is mainly of the β form, which shows diffuse reflections. At liquid nitrogen temperature it is of the β form with sharp reflections, contaminated with a small amount of oligomer. It was also found that at low temperatures, fibrillar crystals grow from the substrate in a direction 45° against the gas flow, and at even lower temperature, well-oriented filmlike crystals grow perpendicular to the substrate surface.  相似文献   

3.
Simultaneous as well as successive polymerization and crystallization is possible. While crystallization after polymerization usually produces folded chain lamellar crystals, crystallzation during polymerization frequently produces fibrillar extended chain crystals.  相似文献   

4.
Summary: The stereoselective polymerization of partial rac‐lactide was attempted by using crystallization during polymerization. Polymerizations were carried out with trifluoromethanesulfonic acid in a mixed solvent of toluene and octane. The molar content of L ‐lactate in the feed was 95%. Polymerization proceeded with the elimination of D ‐lactate by means of crystallization. Poly(L ‐lactic acid) (PLLA) crystals were first precipitated and then plate‐like poly(lactic acid) (PLA) crystals were finally obtained, of which the composition of L ‐lactate was 97.6% and the was 1.68 × 104.

The polymerization time dependence of the microstructure of poly(lactic acid), i.e., the percentage of mm triads (mm%), prepared from partial rac‐lactide in toluene‐70.  相似文献   


5.
The crystal growth of LiPO3 from the polymerizing LiH2PO4 melt is studied using optical nicroscopy, thermogravimetry, electron microscopy and model calculations. It is shown that the linear crystal growth rate is constant at a given temperature and has an activation energy of 110kJ/mole. The major molecule involved in the simultanous crystallization during polymerization, which leads to extended chain crystals, is the dimer.  相似文献   

6.
Thermal effects accompanying vacuum deposition of poly(chloro-para-xylylene) in the temperature range between ?196 and 0°C have been studied using two separate methods. One is based on the recording of the rate of evaporation of liquid nitrogen and it is used for the deposition at ?196°C, and the second involves the recording of changes in the substrate temperature and is used for the deposition in the range of ?162 to 0°C. These methods enable us to observe two distinct effects: fast (discrete), resulting in the appearance of sharp, exothermic spikes; and slow (continuous), resulting in the shift of the baseline. The shift of the baseline exhibits a well-defined maximum at about ?65°C and this temperature is attributed to the melting point of the monomer. The fast process always occurs below this temperature and is explained as a solid state, chain addition polymerization. The quantification of the heat effect at ?196°C strongly suggests that the quinonoid form of the monomer participates in the propagation step of this chain reaction. The fast (solid state) and the continuous modes of polymerization may occur simultaneously in the range of about ?140 and ?65°C. The frequency of the initiation which is the formation of dimer radical seems to control the occurrence of these two modes of polymerization.  相似文献   

7.
Anionic polymerization of N-ethylmaleimide (N-EMI) was carried out with potassium t-butoxide, lithium t-butoxide, n-butyllithium, and ethylmagnesium bromide as initiators in THF and in toluene. An almost quantitative yield of poly(N-EMI) was obtained with potassium t-butoxide as initiator in THF in a wide range of polymerization temperatures. Initiators possessing lithium as counter cation produced poly(N-EMI) in slightly lower yields and ethylmagnesium bromide gave the polymer only in less than 35% yield in THF. As a polymerization reaction solvent, THF was preferable for the polymerization of N-EMI compared with toluene with respect to polymer yields. Poly(N-EMI) obtained with anionic initiators exerted unimodal molecular weight distribution. From 1H- and 13C-NMR spectra of poly(N-EMI) anionic polymerization of N-EMI with potassium t-butoxide was revealed to proceed at carbon–carbon double bond. t-Butoxide system was found to have a “living” polymerization character, i.e., the observed average degree of polymerization was in good agreement with the one calculated from the initial molar ratio of N-EMI/initiator and the yield of polymer.  相似文献   

8.
The effect of temperature and conversion on the polymerization rate at higher conversion was investigated with regard to the γ-ray-induced polymerization of hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) in the supercooled phase. The polymerization rate changed from acceleration to depression at various conversions, depending on the polymerization temperature. It was found that Tv at which the viscosity of the system became ca. 103 cpoise influenced the shape of the polymerization time–conversion curve. The experimentally obtained conversion reflection point in the polymerization time–conversion curve agreed with the conversion where the polymerization temperature is the same as the calculated Tv of the system. When the polymerization temperature was lower than Tv of the monomer, no acceleration of the polymerization occurred. When the polymerization temperature was higher than Tv of the polymer, no depression of the polymerization rate was observed. The effect of temperature on the saturated conversion (final conversion) was also examined in terms of Tg of the polymerization system. The experimentally obtained saturated conversion agreed with the conversion where the polymerization temperature is the same as the calculated Tg of the system.  相似文献   

9.
Cationic polymerizations of trioxane in 1,2‐ethylene dichloride and benzene were heterogeneous and reversible. Phase separation accompanying with crystallization occurred during the polymerization. Three morphological changes were found in the course of the polymerization as were investigated by dilatometry and precipitation method. Based on the findings of morphological changes and three reversible processes for the polymerization, a rate equation was proposed to describe the polymerization. The proposed rate equation was fairly good in describing the experimental data, and kinetics constants including Kp, Kd, Kp′, Kd′, M, M, and Kdis/Kcr for the polymerization at 30, 40, and 50°C in 1,2‐ethylene dichloride and benzene were obtained. Factors that affected the kinetics constants were discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 483–492, 1999  相似文献   

10.
This article is part of the general project laid out in Part I (ref. 9) and is concerned with obtaining information on primary (unthickened) crystals of polyethylene formed at low supercoolings. For this, a technique had to be devised by which crystallization could be speeded up so as to eliminate or at least reduce lamellar thickening. Indeed we were able to increase the rate of crystallization by an order of magnitude using a technique which we have called enhanced self-nucleation. Using this technique we find that when viewed under an optical microscope, spherulites crystallize uniformly over the field of view, and not, as is usual, by a radial growth process. Isothermal crystallization in bulk linear polyethylene has been studied by means of the enhanced self-nucleation technique as a function of crystallization time by using Raman LAM and melting points to assess variations of fold length Data have been obtained at very much shorter times than before. At short times, we find a constant fold length; at longer times the crystals thicken linearly with the logarithm of time. Values of the initial fold length for crystallization temperatures between 118 and 130°C are presented. Associated with the thickening at short times we find an induction time which increases with temperature.  相似文献   

11.
The kinetics of polymerization were investigated for the polymerization of hexamethylcyclotrisiloxane (D3) in toluene with methanol or water as an initiator, benzyltrimethylammonium bis(o-phenylenedioxy)phenylsiliconate as a catalyst, and dimethyl sulfoxide (DMSO) as a promoter. The rate of initiation was found to be comparable with both water and methanol. Addition of catechol drastically reduces the rate of initiation. The rate of propagation was found to be dependent upon the catalyst, DMSO, catechol and the aging of the catalyst solution. Two types of functional groups were postulated to be present during the propagation reaction, i.e., ?SiOH (dormant form) and ?SiONR4 (living form). The former can be converted to the latter by R4NOH derived from hydrolysis of catalyst. A postulated mechanism of polymerization with biscatecholsiliconate is presented.  相似文献   

12.
The atom transfer radical polymerization of cyclohexyl methacrylate (CHMA) is reported. Controlled polymerizations were performed with the CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalytic system with ethyl 2‐bromoisobutyrate as the initiator in bulk and different solvents (25 vol %) at 40 °C. The polymerization of CHMA in bulk resulted in a controlled polymerization, although the concentration of active species was relatively elevated. The addition of a solvent was necessary to reduce the polymerization rate, which was dependent on the dipole moment. Well‐controlled polymers were obtained in toluene, diphenyl ether, and benzonitrile solutions. Poly(cyclohexyl methacrylate) as a macroinitiator was used to synthesize the poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) block copolymer, which allowed a demonstration of its living character. In addition, two difunctional initiators, 1,4‐bis(bromoisobutyryloxy) benzene and 1,2‐bis(bromoisobutyryloxy) ethane, were used to initiate the atom transfer radical polymerization of CHMA. The experimental molecular weights of the obtained polymers were very close to the theoretical ones. These, along with the relative narrow molecular weight distributions, indicated that the polymerization was living and controlled. For confirmation, two different poly(tert‐butyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) triblock copolymers were also synthesized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 71–77, 2005  相似文献   

13.
This paper deals with the kinetic modelling of unstabilised polyethylene thermal oxidation, particular attention being paid to the domain of low temperatures, typically below 80 °C. Experimental data show that the temperature dependence of the induction time ti and the steady state rate of oxygen absorption rS display a discontinuity at 80 °C. A model based on the hypothesis that this discontinuity concerns only the PO2 bimolecular combination processes and is essentially explained by the competition between terminating and non-terminating PO2 + PO2 reactions, was proposed. With pertinent values of the Arrhenius parameters of the elementary reactions under consideration, the model fits well the experimental data (in the 40-200 °C temperature range) and is consistent with previously analysed results of radiochemical ageing. According to this model, 35-40% of the bimolecular PO2 combinations would not be terminating at 45 °C and this proportion would increase with the temperature. Concerning terminations, the relative fraction of coupling processes, leading to peroxide bridges, would decrease relatively to the disproportionation processes when the temperature increases.  相似文献   

14.
A new theory, based on the concept of nonuniform distribution of free radicals in polymerizing latex particles, has been developed for the kinetics of two-phase emulsion polymerization reactions. This theory also takes into account the diffusion controlled termination and propagation reactions to describe the gel effect and limiting conversion. The kinetic model permits prediction of the distribution of free radicals in the two polymer phases and rate of polymerization as a function of reaction conditions. Experimental data for polystyrene/polymethyl methacrylate and polymethyl methacrylate/polystyrene (postformed polymer/preformed polymer) in the literature have been used to assess the proposed idea of nonuniform distribution of free radicals in the latex particle.  相似文献   

15.
Crystallization processes occurring during polymer synthesis in a nonsolvent medium are discussed. It is concluded that in the case of heterogeneous polymerization of ethylene the polymer is produced as a supercooled liquid surrounding the catalyst particles. These particles then coalesce until a critical size is reached allowing a high nucleation probability. Thus coalescence coupled with polymerization, leads to crystallization at a relatively uniform particle size. Two less usual polymerization catalyst systems, VCl3 produced by a high-frequency discharge in VCl4 vapor, and the mixture of TiCl4 and Al(CH3)3 vapors (an apparently homogeneous system) are used to illustrate these concepts for polyethylene.  相似文献   

16.
The polymerization and crystallization of diazomethane was analyzed starting with various monomer and catalyst concentrations by following the monomer concentration and analysis of the solid polymethylene produced. Electron microscopy, thermal analysis, x-ray diffraction, and viscometry and density determinations were used to characterize the crystals as produced and after etching with nitric acid. The crystals have a fibrillar and a lamellar component and show no regular chain folding of the molecules. The overall process follows only very approximately the path expected for an ideal living-polymer system capable of reaction in solution and in the solid state. For more detailed correspondence, it was necessary to assume two reaction paths and two crystallization paths.  相似文献   

17.
The retardation of acrylonitrile (AN) polymerization by p-toluenesulfinic acid (TSA) in the presence of relatively strong acids has been further investigated. Conductance measurements supported the hypothesis that an ionic complex, presumably RSO2H2+, is obtained by a reaction of the sulfinic acid with a proton. It is postulated that this complex is a chain transfer agent for the observed retardation. On the basis of this assumption, a kinetic scheme was developed involving additional termination steps by the complex. The scheme accounts for the maximum in initial rate observed on increasing the concentration of added sulfonic acid at a constant TSA concentration. It also provides an explanation for the elimination of the autoacceleration in the bulk polymerization of AN when strong acids are added. The orders derived from the kinetic equations are in good agreement with the orders evaluated from the kinetic experiments.  相似文献   

18.
Polymerization was made at 60°C in a lyotropic liquid crystal of sodium undecenoate and water. The liquid crystalline structure prior to polymerization was identified by optical microscopy and low-angle x-ray diffraction as an array of hexagonal closely packed cylinders with the hydrophobic part of the soap in the center of the cylinders. During polymerization the structure became isotropic at 60°C. Cooling to 20°C transformed the structure to a lamellar liquid crystal–a reversible transition. The structure of the lamellar phase was interpreted as a polyethylene backbone from which deformed decanoate chains reached toward the aqueous layer. Molecular models showed the model to accept head-tail, head-head, and tail-tail configurations in cis and trans conformations with the exception of the cis tail-tail configuration.  相似文献   

19.
The mechanism of growth of latex particles in the emulsion polymerization of vinyl acetate using a polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (TREM LF-40; Henkel) was investigated. Both the aqueous phase and the particle/water interface were found to be loci for the copolymerization of TREM LF-40 with vinyl acetate. Competitive growth experiments using TREM LF-40 and its nonpolymerizable derivative were conducted to separate the effects of aqueous phase and particle surface. Particle size analysis of the seeded and unseeded polymerizations coupled with kinetic results suggested that the reactions at the particle/water interface are more important and that the particle size of the latexes is a key parameter controlling the polymerization rate through copolymerization and chain transfer to the polymerizable surfactant at the particle surface. A decrease in particle size lead to an increase in the amount of TREM LF-40 polymerized at the particle surface and to a decrease in polymerization rate. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号