首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Present work mainly focuses on experimental investigation to improvement of hydrogen production by water photoelectrolysis. An experimental facility was designed and constructed for visible light photocatalysis. A series of N‐TiO2 photocatalysts impregnated with platinum on the surface of N‐TiO2 were prepared. Hydrogen production upon irradiating aqueous Pt/N‐TiO2 suspension with visible light was investigated. The shift in excitation wavelength of TiO2 was 380 nm improved the yield of hydrogen production by N‐TiO2 and Pt/N‐TiO2. We used a 400 W mercury arc lamp combined with a 400 nm cutoff filter eliminating all the wavelengths under 400 nm. Pt/N‐TiO2 material was characterized with TPR, reflective UV/Visible spectroscopy and TEM. The best hydrogen production rate obtained for this setup for N/Ti = 10, 0.05 wt% Pt/N‐TiO2, through water splitting was about 772 μmolh?1g?1.  相似文献   

2.
Photocatalytic degradation of methyl orange (MO) as a model of an organic pollution was accomplished with magnetic and porous TiO2/ZnO/Fe3O4/PANI and ZnO/Fe3O4/PANI nanocomposites under visible light irradiation. The structures of nanocomposites were characterized by various techniques including UV–Vis absorption spectroscopy, XRD, SEM, EDS, BET and TGA. Optical absorption investigations show two λmax at 450 and 590 nm for TiO2/ZnO/Fe3O4/PANI nanocomposites respectively possessing optical band gaps about 2.75 and 2.1 eV smaller than that of the neat TiO2 and ZnO nanoparticles. Due to these optical absorptions, the nanocomposites can be considered promising candidates as visible light photocatalysts to produce more electron‐hole pairs. The degradation of MO, extremely increased using polymeric photocatalysts and decolorization in the presence of visible light achieved up to 90% in less than 20 min in comparison with the neat nanoparticles (about 10%). All these advantages promise a bright future for these composites as useful photocatalysts. The degradation efficiency of MO using stable nanocomposites was still over 70% after ten times reusing. The highest decolorizing efficiencies were achieved with 0.75 g L?1 of catalyst and 10 mg L?1 of MO at natural pH under visible light irradiation in less than 20 min.  相似文献   

3.
It is highly desirable but challenging to optimize the structure of photocatalysts at the atomic scale to facilitate the separation of electron–hole pairs for enhanced performance. Now, a highly efficient photocatalyst is formed by assembling single Pt atoms on a defective TiO2 support (Pt1/def‐TiO2). Apart from being proton reduction sites, single Pt atoms promote the neighboring TiO2 units to generate surface oxygen vacancies and form a Pt‐O‐Ti3+ atomic interface. Experimental results and density functional theory calculations demonstrate that the Pt‐O‐Ti3+ atomic interface effectively facilitates photogenerated electrons to transfer from Ti3+ defective sites to single Pt atoms, thereby enhancing the separation of electron–hole pairs. This unique structure makes Pt1/def‐TiO2 exhibit a record‐level photocatalytic hydrogen production performance with an unexpectedly high turnover frequency of 51423 h?1, exceeding the Pt nanoparticle supported TiO2 catalyst by a factor of 591.  相似文献   

4.
《中国化学快报》2022,33(3):1303-1307
Titanium dioxide (TiO2) has been limited in photocatalysis due to its wide band gap (3.2 eV) and limited absorption in the ultraviolet range. Therefore, organic components have been introduced to hybrid with TiO2 for enhanced photocatalytic efficiency under visible light. Here, we report that benzo[1,2-b:4,5-b']dithiophene polymer was an ideal organic material for the preparation of a hybrid material with TiO2. The energy band gap of the resulting hybrid material decreased to 2.9 eV and the photocatalytic hydrogen production performance reached 745.0 µmol g?1 h?1 under visible light irradiation. Meanwhile, the material still maintained the stability of hydrogen production performance after 40 h of photocatalytic cycles. The analysis of the transient current response and electrochemical impedance revealed that the main reasons for the enhanced water splitting of the hybrid materials were the faster separation of electron hole pairs and the lower recombination of photocarrier ions. Our findings suggest that polythiophene is a promising organic material for exploring hybrid materials with enhanced photocatalytic hydrogen production.  相似文献   

5.
Herein, Pt‐decorated TiO2 nanocube hierarchy structure (Pt‐TNCB) was fabricated by a facile solvothermal synthesis and in‐situ photodeposition strategy. The Pt‐TNCB exhibits an excellent solar‐driven photocatalytic hydrogen evolution rate (337.84 μmol h?1), which is about 37 times higher than that of TNCB (9.19 μmol h?1). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 μmol h?1). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar‐driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron‐hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt‐TNCB photocatalyst with SPR effect may provide a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.  相似文献   

6.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

7.
A feasible strategy is reported for the synthesis of a disk‐like Pt/CeO2‐p‐TiO2 catalyst derived from the titanium‐based metal–organic framework (MOF) MIL‐125(Ti) through a few valid steps. To verify the successful synthesis and structural features of the Pt/CeO2‐p‐TiO2 catalyst, as‐prepared samples were characterized using several techniques. The characterizations demonstrated that MOF‐derived porous TiO2 was appropriate for application as a support owing to its moderate surface area (101 m2 g?1) and suitable pore size (6 nm). Moreover, to study the effect of calcination temperature on the catalytic performance, the obtained catalyst was calcined at various temperatures. It was found that Pt/CeO2‐p‐TiO2 calcined at 550 °C exhibited the highest catalytic performance, evaluated by means of the reduction of 4‐nitrophenol monitored by UV–visible spectra. Furthermore, this catalyst showed good reusability with a conversion of 94% even after six cycles. Finally, a possible reaction mechanism was proposed to explain the reduction of 4‐nitrophenol to 4‐aminophenol over the Pt/CeO2‐p‐TiO2 catalyst.  相似文献   

8.
In the present work, bismuth vanadate composited photocatalysts were synthesized and characterized. X‐ray diffractometry and Raman results showed that the particles were well crystallized, and formed by the complex of monoclinic BiVO4 and TiO2. On electron microscopy, the photocatalyst exhibited high crystallization, agglutination and irregular shape, and was surrounded by numerous TiO2 particles. The study of surface areas showed that the specific surface area of 30‐BiVO4/TiO2 composited was 112 m2·g?1, which was nearly 10 times that of pure BiVO4. The ultraviolet–visible diffuse reflectance spectra indicated the composited photocatalyst were activated in visible light. The activity of photocatalytic water splitting was studied. The results showed that monomer BiVO4 photocatalyst was not able to produce hydrogen under any light source. BiVO4/TiO2 composited photocatalysts, however, were capable of generating hydrogen. Under UV light irradiation for 120 min, 1 g catalyst dispersed in 50 mL deionized water produced almost 1 mL hydrogen, such that the productivity of hydrogen was higher than that of P25‐TiO2. Photocatalytic decomposition of water under visible light also confirmed that the BiVO4/TiO2 composited photocatalyst had the ability of water splitting.  相似文献   

9.
The need for renewable energy focuses attention on hydrogen obtained by using sustainable and green methods. The sustainable compound glycerol can be used for hydrogen production by heterogeneous photocatalysis. A novel approach involves the promotion of the TiO2 photocatalyst with a binary combination of nitrogen and transition metal. We report the synthesis and spectroscopic characterization of the new N‐M‐TiO2 photocatalysts (M=none, Cr, Co, Ni, Cu), and the photocatalytic reforming of glycerol to hydrogen under ambient conditions and near‐UV or visible light versus benchmark P25 TiO2. In units of activity μmol m?2 h?1, N‐Ni‐TiO2 is five‐fold more active than P25, and N‐Cu‐TiO2 is 44‐fold more active. The photocatalytic activity of N‐M‐TiO2 increases from Cr to Co and Ni, whereas the photoluminescence decreases; the change in activity is due to the modulation of charge recombination.  相似文献   

10.
李波  吕功煊 《物理化学学报》2013,29(8):1778-1784
以曙红Y(EY)敏化Pt/TiO2(EY-Pt/TiO2)光催化产氢体系为模型, 研究了电子传递剂甲基紫精(MV2+)的加入对该体系产氢活性和稳定性的影响, 并通过紫外-可见光(UV-Vis)吸收光谱、荧光光谱和光电化学表征手段对MV2+的作用机制进行了研究. 结果表明, 当以三乙醇胺(TEOA)为电子给体时, MV2+可使EY激发态发生氧化性和还原性淬灭, 有效降低了不稳定中间体EY3-·的形成和积累, 促进了电子由染料分子向产氢活性位点的有效传递, 从而提高了产氢体系的活性和稳定性. 两种敏化体系瞬态光电流以及产氢活性受EY浓度影响的差异进一步证明, MV2+作为电子传递剂有效提高了光生电子的传递和利用效率.  相似文献   

11.
C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV–vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.  相似文献   

12.
This work reports the reforming of bio-ethanol on chitosan–TiO2 hybrid photocatalysts at ambient temperature. The influence of chitosan composition on the photocatalytic performance of chitosan–TiO2 hybrid was studied. The hybrids were characterized by CHN elemental analysis, nitrogen adsorption–desorption isotherms, thermogravimetric analysis, diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the preparation variables used for the incorporation of chitosan on TiO2 promoted changes in the morphology, superficial area, crystal size and porosity of the photocatalyst, affecting the band gap of this semiconductor and consequently the reactivity of the chitosan–TiO2 hybrids. The catalysts were evaluated for hydrogen production from ethanol under visible light. It was demonstrated that the calcination temperature of 623 K and a chitosan content of 20% were the most appropriate preparation conditions and the resulting product displays a pore size of 1.9 nm, crystal size of 11.3 nm, BET area of 178 m2 g?1 and band gap of 2.92 eV. The calcination temperature of 623 K and incorporation of 20% of chitosan obtained the same results in the conversion rate of hydrogen in comparison to the pure TiO2 P25.  相似文献   

13.
The excellent photocatalytic hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with NaBH4 in the aqueous medium is still a big challenge. Herein, we report a facile one-pot evaporation-induced self-assembly (EISA) method to synthesize a series of CuO/TiO2 nanocomposites. The as-synthesized CuO/TiO2 photocatalysts exhibit remarkable catalytic activity under direct sunlight in selective hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) due to the synergistic interaction of guest copper nanoparticles with host titanium dioxide (TiO2) species. Especially, 5 wt% CuO/TiO2 nanocomposite revealed superior reaction rate constant (k) value (0.306 min−1) when compared to 3 wt% CuO/TiO2 (0.192 min−1) and 7 wt% CuO/TiO2 (0.240 min−1). Moreover, several characterization techniques (XRD, TEM, N2 adsorption–desorption isotherm, DRS, and XPS) were executed to deeply investigate the effect of copper content on the bulk and interfacial properties of the catalysts. The characterization results proved that the superior photocatalytic hydrogenation over 5 wt% CuO/TiO2 catalyst can be ascribed to moderate CuO loading as well as even dispersion of CuO species on the surface of active TiO2 host, which can largely improve the light absorption ability within visible light region. Besides, the 5 wt% CuO/TiO2 catalyst exhibits remarkable recyclability and durability, retaining its superior activity (above 95%) up to several repeating cycles, proving its practical applicability for hydrogenation reactions at domestic and industrial levels.  相似文献   

14.
Zinctetramethylpyridylporphyrin (ZnTMPyP4+) in acidic aqueous solution sensitizes efficiently oxygen generation by visible light in the presence of acceptors such as Fe3+ - and Ag+-ions and colloidal RuO2/TiO2 redox catalyst. Hydrogen and oxygen are cogenerated under visible light illumination of ZnTMPyP4+ solutions when a bifunctional catalyst (Pt and RuO2 codeposited onto TiO2) is employed.  相似文献   

15.
Semiconductor photocatalysis has the potential for achieving sustainable energy generation and degrading organic contaminants. In TiO2, the addition of carbonaceous nanomaterials has attracted extensive attention as a means to increase its photocatalytic activity. In this study, composites of TiO2 and carbon nanotubes (CNT) in various proportions were synthesized by the hydrothermal method. The crystalline structures, morphologies, and light absorption properties of the TiO2/CNT photocatalysts were characterized by PXRD, TEM and UV–Vis absorption spectra. The photocatalytic efficiency of the composites was evaluated by the degradation of Sudan (I) in UV–Vis light. Introducing 0.1–0.5 wt% CNT was shown to substantially improve the photoactivity of TiO2. The composite with 0.3 wt% CNT showed the best catalytic activity, and its reaction activation energy was calculated as 39.57 kJ mol?1 from experimental rates. The degradation products of Sudan (I) with different irradiation durations were characterized by Fourier transform infrared spectroscopy, and a degradation reaction process was proposed.  相似文献   

16.
Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, nitrogen-doped TiO2 with high hydrogen production by photocatalytic water splitting were prepared by microwave-assisted hydrothermal method using titanium sulfate as precursor in the presence of urea. The nitrogen doped TiO2 prepared in this study was pure anatase phase with a high surface area (372?m2?g?1) and showed a very high hydrogen evolution rate of water splitting reaction under UV light irradiation (4,386?μmol?g?1?h?1) and visible light irradiation (185?μmol?g?1?h?1) which was about 15?times higher than commercial TiO2 (Degussa P25).  相似文献   

17.
Au core Ag shell composite structure nanoparticles were prepared using a sol method. The Au core Ag shell composite nanoparticles were loaded on TiO2 nanoparticles as support using a modified powder–sol method, enabling the generation of Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone. The sols were characterized by means of ultraviolet–visible light (UV–Vis) reflection spectrometry, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The activity of the Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone was evaluated and the effect of Cl? anions on the photocatalytic activity of the catalysts was highlighted. Results showed that Au @ Ag/TiO2 prepared via the modified powder–sol route in the presence of an appropriate amount of NaCl solid as demulsifier had better activity in the photocatalytic decomposition and elimination of ozone. At the same time, Au @ Ag/TiO2 catalysts had better ability to resist poisonous Cl? anions than conventional Au/TiO2 catalyst. The reasons could be, first, that NaCl was capable of reducing the concentration of free Ag+ by adsorption on the surface of Ag particles forming AgCl and enhancing the formation of Au core Ag shell particles, leading to a better resistance to Cl? anions of the catalysts, and, second, AgCl took part in the photocatalytic decomposition of ozone together with Au @ Ag/TiO2 catalysts and had a synergistic effect on the latter, resulting in better photocatalytic activity of Au @ Ag/TiO2 catalysts.  相似文献   

18.
Photocatalyst Materials for Water Splitting   总被引:4,自引:0,他引:4  
Various photocatalyst materials developed by the group of the present author are described. Alkali and alkaline earth tantalates have arisen as a new group of photocatalyst materials for splitting of water into H2 and O2 under ultraviolet irradiation. They showed activities even without co-catalysts such as Pt, being different from titanate photocatalysts. When NiO co-catalysts were loaded on the tantalate photocatalysts, the photocatalytic activities were markedly increased. Among the tantalates, NiO/NaTaO3 doped with La showed the highest activity. BiVO4, AgNO3, and TiO2 co-doped with Cr and Sb photocatalysts showed high activities for O2 evolution in the presence of a sacrificial reagent (Ag+) under visible light irradiation ( > 420 nm). Pt/SrTiO3 co-doped with Cr and Sb or Ta, Pt/NaInS2, and Pt/AgInZn7S9 photocatalysts showed high activities for H2 evolution from aqueous solutions containing reducing reagents under visible light irradiation. Furthermore, Cu- or Ni-doped ZnS photocatalysts showed H2 evolution activities even without co-catalysts such as Pt.  相似文献   

19.
An investigation of hydrogen production with a series of Au/TiO2 photocatalysts reveals that the Au nanoparticles play different roles depending on the wavelength of the light irradiation. Under visible‐light irradiation, the photoactivity is primarily controlled by the intensity of the Au surface plasmon band, whereas under UV irradiation the Au nanoparticles act as co‐catalysts with TiO2.  相似文献   

20.
The development of visible‐light‐active photocatalysts is being investigated through various approaches. In this study, C60‐based sensitized photocatalysis that works through the charge transfer (CT) mechanism is proposed and tested as a new approach. By employing the water‐soluble fullerol (C60(OH)x) instead of C60, we demonstrate that the adsorbed fullerol activates TiO2 under visible‐light irradiation through the “surface–complex CT” mechanism, which is largely absent in the C60/TiO2 system. Although fullerene and its derivatives have often been utilized in TiO2‐based photochemical conversion systems as an electron transfer relay, their successful photocatalytic application as a visible‐light sensitizer of TiO2 is not well established. Fullerol/TiO2 exhibits marked visible photocatalytic activity not only for the redox conversion of 4‐chlorophenol, I?, and CrVI, but also for H2 production. The photoelectrode of fullerol/TiO2 also generates an enhanced anodic photocurrent under visible light as compared with the electrodes of bare TiO2 and C60/TiO2, which confirms that the visible‐light‐induced electron transfer from fullerol to TiO2 is particularly enhanced. The surface complexation of fullerol/TiO2 induced a visible absorption band around 400–500 nm, which was extinguished when the adsorption of fullerol was inhibited by fluorination of the surface of TiO2. The transient absorption spectroscopic measurement gave an absorption spectrum ascribed to fullerol radical cations (fullerol.+) the generation of which should be accompanied by the proposed CT. The theoretical calculation regarding the absorption spectra for the (TiO2 cluster+fullerol) model also confirmed the proposed CT, which involves excitation from HOMO (fullerol) to LUMO (TiO2 cluster) as the origin of the visible‐light absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号