首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxynitrite (ONOO) as a major reactive oxygen species plays important roles in cellular signal transduction and homeostatic regulation. Precise detection of ONOO in biological systems is vital for exploring its physiological and pathological function. Among numerous detection methods, fluorescence imaging technology using fluorescent probes offers some advantages, including simple operation, high sensitivity and selectivity, as well as real-time and nondestructive detection. In particular, ratiometric fluorescent probes, in which the built-in calibration of the two emission bands prevents interference from the biological environment, have been extensively employed to monitor the fluctuation of bioactive species. In this review, we will discuss small-molecule ratiometric fluorescent probes for ONOO in live cells or in vivo, which involves chemical structures, response mechanisms, and biological applications. Moreover, the challenges and future prospects of ONOO-responsive ratiometric fluorescent probe are also proposed.  相似文献   

2.
Intracellular pH plays a significant role in various biological processes, including cell proliferation, apoptosis, metabolism, enzyme activity and homeostasis. In this work, a novel design strategy for the preparation of pH responsive carbon dots (CDs-pH) for ratiometric intracellular imaging was reported. By using SciFinder database, fluorescent CDs-pH with the required pKa value of 6.84 were rationally designed, which is vital important for precise sensing of intracellular pH. As a result, the synthesized CDs-pH demonstrated robust ability to test pH fluctuations within the physiological range of 5.4-7.4. The CDs-pH was further utilized for fluorescent ratiometric imaging of pH in living HeLa cells, effectively avoided the influence of autofluorescence from native cellular species. Moreover, real-time monitoring of intracellular pH fluctuation under heat shock was successfully realized. This SciFinder-guided design strategy is simple and flexible, which has a great potential to be used for the development of other types of CDs for various applications.  相似文献   

3.
《中国化学快报》2021,32(10):3057-3060
Intracellular pH is a key parameter related to various biological and pathological processes. In this study, a ratiometric pH fluorescent sensor ABTT was developed harnessing the amino-type excited-state intramolecular proton transfer (ESIPT) process. Relying on whether the ESIPT proceeds normally or not, ABTT exhibited the yellow fluorescence in acidic media, or cyan fluorescence in basic condition. According to the variation, ABTT behaved as a promising sensor which possessed fast and reversible response to pH change without interference from the biological substances, and exported a steady ratiometric signal (I478/I546). Moreover, due to the ESIPT effect, large Stokes shift and high quantum yield were also exhibited in ABTT. Furthermore, ABTT was applied for monitoring the pH changes in living cells and visualizing the pH fluctuations under oxidative stress successfully. These results elucidated great potential of ABTT in understanding pH-dependent physiological and pathological processes.  相似文献   

4.
A novel SciFinder-guided strategy for the preparation of pH responsive carbon dots (CDs-pH) for ratiometric intracellular imaging was developed.  相似文献   

5.
Ratiometric fluorescent probes are of great importance in research, because a built‐in correction for environmental effects can be provided to reduce background interference. However, the traditional ratiometric fluorescent probes require two luminescent materials with different emission bands. Herein a novel ratiometric probe based on a single‐wavelength‐emitting material is reported. The probe works by regulating the luminescent property of graphene quantum dots with UV illumination as activator. The ratiometric sensor shows high sensitivity and specificity for iron ions. Moreover, the ratiometric sensor was successfully employed to monitor ferritin levels in Sprague Dawley rats with chemical‐induced acute liver damage. The proposed single‐wavelength ratiometric fluorescent probe may greatly broaden the applicability of ratiometric sensors in diagnostic devices, medical applications, and analytical chemistry.  相似文献   

6.
《中国化学快报》2023,34(3):107586
Cell stress responses are associated with numerous diseases including diabetes, neurodegenerative diseases, and cancer. Several events occur under cell stress, in which, are protein expression and organelle-specific pH fluctuation. To understand the lysosomal pH variation under cell stress, a novel NIR ratiometric pH-responsive fluorescent probe (BLT) with lysosomes localization capability was developed. The quinoline ring of BLT combined with hydrogen ion which triggered the rearrangement of π electrons conjugated at low pH medium, meanwhile, the absorption and fluorescent spectra of BLT showed a red-shifts, which gived a ratiometric signal. Moreover, the probe BLT with a suitable pKa value has the potential to discern changes in lysosomal pH, either induced by heat stress or oxidative stress or acetaminophen-induced (APAP) injury stress. Importantly, this ratiometric fluorescent probe innovatively tracks pH changes in lysosome in APAP-induced liver injury in live cells, mice, and zebrafish. The probe BLT as a novel fluorescent probe possesses important value for exploring lysosomal-associated physiological varieties of drug-induced hepatotoxicity.  相似文献   

7.
Mitochondrial polarity strongly influences the intracellular transportation of proteins and interactions between biomacromolecules. The first fluorescent probe capable of the ratiometric imaging of mitochondrial polarity is reported. The probe, termed BOB, has two absorption maxima (λabs=426 and 561 nm) and two emission maxima—a strong green emission (λem=467 nm) and a weak red emission (642 nm in methanol)—when excited at 405 nm. However, only the green emission is markedly sensitive to polarity changes, thus providing a ratiometric fluorescence response with a good linear relationship in both extensive and narrow ranges of solution polarity. BOB possesses high specificity to mitochondria (Rr=0.96) that is independent of the mitochondrial membrane potential. The mitochondrial polarity in cancer cells was found to be lower than that of normal cells by ratiometric fluorescence imaging with BOB. The difference in mitochondrial polarity might be used to distinguish cancer cells from normal cells.  相似文献   

8.
《Tetrahedron letters》2019,60(26):1696-1701
As an important parameter of intracellular metabolism, pH plays important roles in maintaining normal physiological processes. The abnormal pH could cause disorder of cell function which may cause neurological diseases. Herein, we present two novel ratiometric fluorescent probes to detect pH changes. The probes employed 2-(2′-hydroxyphenyl)benzothiazole as fluorescent platform, and displayed desirable fluorescence response to pH on the basis of excited state intramolecular proton transfer (ESIPT) process. The probe BtyC-1 showed green fluorescence at 546 nm under acidic conditions, while it displayed strong blue fluorescence at 473 nm and weak green fluorescence at 546 nm under alkaline conditions. Biological experiments demonstrated that the probe BtyC-1 could be successfully applied for the ratiometric imaging of cellular pH and the NH4Cl-induced pH changes in living cells.  相似文献   

9.
Fluorescence imaging is a powerful technique for continuous observation of dynamic intracellular processes of living cells. Fluorescent probes bearing a fluorescence switching property associated with a specific recognition or reaction of target biomolecule, that is, stimuli-responsibility, are important for fluorescence imaging. Thus, fluorescent probes continue to be developed to support approaches with different design strategies. When compared with simple intensity-changing fluorescent probes, ratiometric fluorescent probes typically offer the advantage of less sensitivity to errors associated with probe concentration, photobleaching, and environmental effects. For intracellular usage, ratiometric fluorescent probes based on small molecules must be loaded into the cells. Thus, probes having intrinsic fluorescence may obscure a change in intracellular signal if the background fluorescence of the remaining extracellular probes is high. To overcome such disadvantages, it is necessary to minimize the extracellular background fluorescence of fluorescent probes. Here, the design strategy of the latent ratiometric fluorescent probe for wash-free ratiometric imaging using a xanthene dye seminapthorhodafluor (SNARF) as the scaffold of fluorophore is discussed.  相似文献   

10.
Developing a novel tool capable of real-time monitoring and accurate quantification of NO is critical to understanding its role in physiological and pathological processes. Herein, a two-photon ratiometric fluorescent probe (NOP) was developed for real-time imaging and quantification of NO based on fluorescence resonance energy transfer-photoinduced electron transfer (FRET-PET). In this developed probe, coumarin (CM) and naphthalimide with o-phenylenediamine (NPM) were rationally designed as a fluorescent donor and acceptor, respectively, to enable a ratiometric fluorescence response to NO. The developed NO probe demonstrated good detection linearity with the concentration of NO in the range of 0.100–200 μM, with a detection limit of 19.5 ± 1.00 nM. Considering the advantages of high selectivity, good accuracy and rapid dynamic response (<15 s), the developed NO probe was successfully applied for real-time imaging and accurate quantification of NO in neural stem cells (NSCs) and different regions of mouse brain tissue with a penetration depth of 350 μm. Using this powerful tool, it was found that NO regulated the activation and differentiation of quiescent NSCs (qNSCs). In addition, NO-induced differentiation of qNSCs into neurons was found to be dose-dependent: 50.0 μM NO caused about 50.0% of qNSCs to differentiate into neurons. Moreover, different regions of the mouse brain were observed to be closely related to the concentration of NO, and the concentration of NO in the DG region was found to be lower than that in the S1BF, CA1, LD and CPu of the Alzheimer''s disease (AD) mouse brain. The symptoms of AD mice were significantly improved through the treatment with NO-activated NSCs in the DG region.

Developing a novel tool capable of real-time monitoring and accurate quantification of NO is critical to understanding its role in physiological and pathological processes.  相似文献   

11.
A new fl uorescent probe 1 was designed for mitochondrial localization and ratiometric detection of hypochlorite in living cells. It is noteworthy that a high Pearson’s co-localization coeffi cient (Rr) we have obtained was calculated to be 0.97.  相似文献   

12.
The sensitivity as well as dynamic range of a ratiometric probe is determined by the ratio of emission intensities at two wavelengths. Thus, it is highly desirable to acquire a large ratiometric fluorescence response at two wavelengths. However, ratiometric fluorescent signals are intrinsic characteristics of the particular probe-analyte interactions. The design for fluorescent probes with a large ratiometric signal remains a challenging task. There is still a lack of a proper approach to enhance the ratiometric fluorescence response for fluorescent chemodosimeters. Herein, we introduced a novel strategy to increase the emission ratios of a chemodosimeter via modulation of intramolecular charge transfer.  相似文献   

13.
Two fluorescent "off-on" probes YYH1 and YYH2 were used for bioimaging mitochondrial polarity and viscosity.  相似文献   

14.
碳点荧光探针的制备及其在食品分析中的应用   总被引:1,自引:0,他引:1  
碳点作为一种新型荧光碳纳米材料,具有优良的光学性能和小尺寸特性,以及良好的生物相容性、低毒性以及易于实现表面功能化等特点,是潜在的可以代替传统半导体量子点等荧光探针的良好选择.基于其独特的荧光特性和高灵敏度,碳点荧光探针在食品分析领域具有很好的应用潜力.本文对近年来荧光碳点的研究进展进行了综述,简述碳点的性能并对碳点的制备方法进行总结对比,重点介绍了碳点荧光探针在食品分析领域的应用,对目前碳点应用的限制进行了分析,对其发展前景和展望.  相似文献   

15.
We introduce color-shifting fluorophores that reversibly switch between a green and red fluorescent form through intramolecular spirocyclization. The equilibrium of the spirocyclization is environmentally sensitive and can be directly measured by determining the ratio of red to green fluorescence, thereby enabling the generation of ratiometric fluorescent probes and biosensors. Specifically, we developed a ratiometric biosensor for imaging calcium ions (Ca2+) in living cells, ratiometric probes for different proteins, and a bioassay for the quantification of nicotinamide adenine dinucleotide phosphate.  相似文献   

16.
The ability to monitor and quantify glutathione (GSH) in live cells is essential in order to gain a detailed understanding of GSH-related pathological events. However, owing to their irreversible response mechanisms, most existing fluorescent GSH probes are not suitable for this purpose. We have developed a ratiometric fluorescent probe (QG- 1 ) for quantitatively monitoring cellular GSH. The probe responds specifically and reversibility to GSH with an ideal dissociation constant (Kd) of 2.59 mm and a fast response time (t1/2=5.82 s). We also demonstrate that QG- 1 detection of GSH is feasible in a model protein system. QG- 1 was found to have extremely low cytotoxicity and was applied to determine the GSH concentration in live HeLa cells (5.40±0.87 mm ).  相似文献   

17.
Zn(2+) plays important roles in various biological systems; as a result, the development of tools that can visualize chelatable Zn(2+) has attracted much attention recently. We report here newly synthesized fluorescent sensors for Zn(2+), ZnAF-Rs, whose excitation maximum is shifted by Zn(2+) under physiological conditions. Thus, these sensors enable ratiometric imaging, which is a technique to reduce artifacts by minimizing the influence of extraneous factors on the fluorescence of a probe. Ratiometric measurement can provide precise data, and some probes allow quantitative detection. ZnAF-Rs are the first ratiometric fluorescent sensors for Zn(2+) that enable quantitative analysis under physiological conditions. ZnAF-Rs also possess suitable K(d) for applications, and high selectivity against other biologically relevant cations, especially Ca(2+). Using these probes, changes of intracellular Zn(2+) concentration in cultured cells were monitored successfully. We believe that these probes will be extremely useful in studies on the biological functions of Zn(2+).  相似文献   

18.
Autophagy plays a vital role in maintaining the balance of normal physiological state of living cells. In this paper, a polarity-specific two-photon fluorescent probe Lyso-NA based on naphthalimide was synthesized for the purpose of monitoring autophagy during biological research. The results of photophysical properties and theoretical calculation confirmed that different polarities of solvents mainly effected fluorescent intensities of probe. Fluorescent intensity, quantum yield and fluorescence lifetime of probe kept a good linear relationship with polarity respectively. In addition, due to its low toxicity and selective accumulation in lysosomes, Lyso-NA is suitable for detecting changes in lysosomal polarity of living cells. Compare with the imaging results of plasmid transfection, a better performed real-time long-term fluorescent visualization of autophagy in living cells was achieved. Probe Lyso-NA can work as an efficient and cost effective imaging tool for visualizing autophagy in living cells.  相似文献   

19.
以柠檬酸为碳源,三聚氰胺和甲醛为双掺杂剂合成碳量子点,并对合成的量子点进行透射电镜(TEM)、傅里叶变换红外光谱(FTIR)、X射线粉末衍射(XRD)、紫外吸收光谱(UV)和荧光光谱(RF)表征,结果表明该量子点粒径均一,发光稳定,适合用作荧光探针。优化了碳量子点含量、pH、反应时间以及温度等影响因素,结果显示检测波长λmax=425 nm时,连翘苷在0.008~0.030 mg/mL范围内有良好的线性关系,1/△f=0.00005(1/c)+0.0003(R2=0.9948),加标回收率在92.5%~106.3%之间,RSD<5%,且干扰物质、反应时间、温度等因素在一定范围内对实验结果的测定无影响。该方法可用于药剂中连翘苷含量的测定。  相似文献   

20.
王通  吕亮  卫潇 《化学通报》2019,82(10):893-898,892
量子点(QDs)是一种纳米发光粒子,具有优异的发光性能,在太阳能利用、荧光检测等方面具有广阔的应用前景。QDs与另一荧光团复合可构建比率荧光探针,实现可视化检测目标物并且提高了检测灵敏度。本文主要对QDs比率荧光探针的种类、构建方法和应用领域的研究进展进行综述,并对其中的不足进行分析,以期为研发具有优异性能的比率荧光探针提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号