首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As alternatives to Pt‐based electrocatalysts, the development of nonprecious metal catalysts with high performance in the cathodic oxygen reduction reaction (ORR) is highly desirable for widespread use in fuel cells. Here we report a simple approach for preparing pentabasic (Fe, B, N, S, P)‐doped reduced graphene oxide (rGO) via a two‐step doping method of adding boric acid and ferric chloride to ternary (N, S, P)‐doped rGO (NSPG). Electrochemical investigation of the composites for the ORR revealed that simultaneously doping appropriate amounts of Fe and B into the NSPG produced a synergistic effect that endowed the prepared catalyst with both a positively shifted ORR half‐wave potential and high selectivity for the 4e? reduction of O2. The optimized Fe2B‐NSPG catalyst approached a 4e? process for the ORR with a half‐wave potential (E1/2=0.90 V vs. RHE) even 30 mV higher than that of the commercial Pt/C catalyst in alkaline solution. Furthermore, relative to the Pt/C catalyst, the Fe2B‐NSPG demonstrated superior stability and excellent tolerance of the methanol cross‐over effect. This simple method afforded pentabasic (Fe, B, N, S, P)‐doped rGO as a promising nonprecious metal catalyst used for alkaline fuel cells.  相似文献   

2.
Well‐dispersed carbon‐coated or nitrogen‐doped carbon‐coated copper‐iron alloy nanoparticles (FeCu@C or FeCu@C?N) in carbon‐based supports are obtained using a bimetallic metal‐organic framework (Cu/Fe‐MOF‐74) or a mixture of Cu/Fe‐MOF‐74 and melamine as sacrificial templates and an active‐component precursor by using a pyrolysis method. The investigation results attest formation of Cu?Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half‐wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C?N for ORR (Ehalf‐wave=0.87 V) outshines all reported analogues. The excellent performance of FeCu@C?N should be attributed to a change in the energy of the d‐band center of Cu resulting from the formation of the copper–iron alloy, the interaction between alloy nanoparticles and supports and N‐doping in the carbon matrix. Moreover, FeCu@C and FeCu@C?N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.  相似文献   

3.
《中国化学快报》2023,34(1):107236
Fe-N/C is a promising oxygen reduction reaction (ORR) catalyst to substitute the current widely used precious metal platinum. Cost-effectively fabricating the Fe-N/C material with high catalytic activity and getting in-depth insight into the responsible catalytic site are of great significance. In this work, we proposed to use biomass, tea leaves waste, as the precursor to prepare ORR catalyst. By adding 5% FeCl3 (wt%) into tea precursor, the pyrolysis product (i.e., 5%Fe-N/C) exhibited an excellent four-electron ORR activity, whose onset potential was only 10 mV lower than that of commercial Pt/C. The limiting current density of 5%Fe-N/C (5.75 mA/cm2) was even higher than Pt/C (5.44 mA/cm2). Compared with other biomass or metal organic frameworks derived catalysts, 5%Fe-N/C showed similar ORR activity. Also, both the methanol tolerance and material stability performances of as-prepared 5%Fe-N/C catalyst were superior to that of Pt/C. X-ray adsorption fine structure characterization revealed that the FeN4O2 might be the possible catalytic site. An appropriate amount of iron chloride addition not only facilitated catalytic site formation, but also enhanced material conductivity and reaction kinetics. The results of this work may be useful for the Fe based transition metal ORR catalyst design and application.  相似文献   

4.
The development of low-cost, efficient, and stable electrocatalysts for the oxygen reduction reaction (ORR) is desirable but remains a great challenge. Herein, we made a highly reactive and stable isolated single-atom Fe/N-doped porous carbon (ISA Fe/CN) catalyst with Fe loading up to 2.16 wt %. The catalyst showed excellent ORR performance with a half-wave potential (E1/2) of 0.900 V, which outperformed commercial Pt/C and most non-precious-metal catalysts reported to date. Besides exceptionally high kinetic current density (Jk) of 37.83 mV cm−2 at 0.85 V, it also had a good methanol tolerance and outstanding stability. Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance. First principle calculations further attributed the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.  相似文献   

5.
分别以三聚氰胺和三聚氰胺的聚合物为配体, 采用浸渍法合成了两种氧还原反应(ORR)催化剂Fe-N/C(1)和Fe-N/C(2). 通过X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和电化学测试对催化剂的成分、形貌和电催化性能进行了表征. 结果表明, 以三聚氰胺聚合物为配体制备的Fe-N/C具有更高的ORR催化活性. 在高温热处理过程中, 催化剂表面能形成更多的石墨N活性点, 是其ORR性能提高的重要原因.  相似文献   

6.
The development of low‐cost, efficient, and stable electrocatalysts for the oxygen reduction reaction (ORR) is desirable but remains a great challenge. Herein, we made a highly reactive and stable isolated single‐atom Fe/N‐doped porous carbon (ISA Fe/CN) catalyst with Fe loading up to 2.16 wt %. The catalyst showed excellent ORR performance with a half‐wave potential (E 1/2) of 0.900 V, which outperformed commercial Pt/C and most non‐precious‐metal catalysts reported to date. Besides exceptionally high kinetic current density (J k) of 37.83 mV cm−2 at 0.85 V, it also had a good methanol tolerance and outstanding stability. Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance. First principle calculations further attributed the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.  相似文献   

7.
Fe/N/C is a promising non‐Pt electrocatalyst for the oxygen reduction reaction (ORR), but its catalytic activity is considerably inferior to that of Pt in acidic medium, the environment of polymer electrolyte membrane fuel cells (PEMFCs). An improved Fe/N/C catalyst (denoted as Fe/N/C‐SCN) derived from Fe(SCN)3, poly‐m‐phenylenediamine, and carbon black is presented. The advantage of using Fe(SCN)3 as iron source is that the obtained catalyst has a high level of S doping and high surface area, and thus exhibits excellent ORR activity (23 A g?1 at 0.80 V) in 0.1 M H2SO4 solution. When the Fe/N/C‐SCN was applied in a PEMFC as cathode catalyst, the maximal power density could exceed 1 W cm?2.  相似文献   

8.
The pyrolyzed carbon supported ferrum polypyrrole(Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid(TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction(ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry(CV) and rotating disk electrode(RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of-1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction(XRD), scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C–Sn–C, an additional beneficial factor for the ORR.  相似文献   

9.
《中国化学快报》2020,31(5):1207-1212
Developing high efficiency and low cost electrocatalysts is critical for the enhancement of oxygen reduction reaction (ORR), which is the fundamental for the development and commercialization of renewable energy conversion technology. Herein, zinc-nitrogen-carbon (Zn-N-C) was prepared by using biomass resource chitosan via a facile carbon bath method. The obtained Zn-N-C delivered a high specific surface area (794.7 cm2/g) together with pore volume (0.49 cm3/g). During the electrochemical evaluation of oxygen reduction reaction (ORR), Zn-N-C displayed high activity for ORR with an onset potential E0 = 0.96 VRHE and a half wave potential E1/2 = 0.86 VRHE, which were more positive than those of the commercial 20 wt% Pt/C benchmark catalyst (E0 = 0.96 VRHE and E1/2 = 0.81 VRHE). In addition, the Zn-N-C catalyst also had a better stability and methanol tolerance than those of the Pt/C catalyst.  相似文献   

10.
The development of non-precious metal catalysts for oxygen reduction reaction (ORR) is essential for large-scale application of proton exchange membrane fuel cells.Herein, we present the in situ formed Fe-N doped hollow carbon nanospheres linked by carbon nanotubes composite, synthesized by using ZIF-8 as sacrificed template to form polydopamine (PDA) hollow nanospheres, followed by complexing with FeCl3, high temperature heat-treatment and NH3-etching.ZIF-8 was gradually decomposed simultaneously with PDA coating due to the loss of Zn2+ grabbed by PDA.NH3 etching resulted in the improved surface area, while the reducibility of NH3 resulted in the formation of Fe4N nanoparticles, which benefits the ORR activity of the catalyst.The half-wave potential of the as-prepared of PDA-Fe/N/C-NH3 was 0.79 V, only 60 mV lower than that of commercial Pt/C.The stability and methanol tolerance of PDA-Fe/N/C-NH3 were even superior to that of commercial Pt/C, indicating the good potential of PDA-Fe/N/C-NH3 for the application of fuel cells. © 2018 Journal of Electrochemistry. All rights reserved.  相似文献   

11.
Single Fe atoms dispersed on hierarchically structured porous carbon (SA‐Fe‐HPC) frameworks are prepared by pyrolysis of unsubstituted phthalocyanine/iron phthalocyanine complexes confined within micropores of the porous carbon support. The single‐atom Fe catalysts have a well‐defined atomic dispersion of Fe atoms coordinated by N ligands on the 3D hierarchically porous carbon support. These SA‐Fe‐HPC catalysts are comparable to the commercial Pt/C electrode even in acidic electrolytes for oxygen reduction reaction (ORR) in terms of the ORR activity (E1/2=0.81 V), but have better long‐term electrochemical stability (7 mV negative shift after 3000 potential cycles) and fuel selectivity. In alkaline media, the SA‐Fe‐HPC catalysts outperform the commercial Pt/C electrode in ORR activity (E1/2=0.89 V), fuel selectivity, and long‐term stability (1 mV negative shift after 3000 potential cycles). Thus, these nSA‐Fe‐HPCs are promising non‐platinum‐group metal ORR catalysts for fuel‐cell technologies.  相似文献   

12.
《中国化学快报》2023,34(4):107455
Pyrolyzed Fe-Nx-C with atomically dispersed Fe-Nx sites are hailed as the most promising alternative to the noble metal Pt-based catalysts towards oxygen reduction reaction (ORR). However, the conventional micropore-confinement synthetic approach usually causes the insufficient utilization of active sites and mass transport resistance as the sites are located inside the micropore. We herein report a polymer-chelation strategy to directly disperse the Fe-Nx active sites onto the carbon surface. The N-rich monomer was in-situ polymerized on the carbon support and then chelated with Fe. The strong Fe-N chelating interaction is crucial to suppress Fe aggregation when undergoing the high-temperature pyrolysis. Due to the enriched surface sites, hierarchically porous structure and excellent conductivity of carbon support, the optimal catalyst (denoted as Fe-Nx-C@C-900) exhibits impressive ORR activity of onset and half-wave potential of 1.02 and 0.87 V, respectively, superior to the Pt/C benchmark.  相似文献   

13.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

14.
We have demonstrated a new, cost effective synthesis of single-walled carbon nanotube supported Pt–Fe core–shell alloy catalyst (Pt–Fe/SWNT) for the direct methanol fuel cell using galvanic exchange reaction. The Pt–Fe/SWNTs have shown much larger Pt active surface area (150 m2/g-Pt) than the commercial catalyst (54 m2/g-Pt). Furthermore, four-fold enhancement of catalytic activity of the Pt–Fe/SWNTs for oxygen reduction reaction (ORR) has been observed. This catalyst has also demonstrated its tolerance to methanol in ORR.  相似文献   

15.
Single metal atoms immobilized on a carbon substrate are of great potential for enhancing the catalytic activities for oxygen reduction and methanol oxidation reactions(ORR/MOR) owing to the maximized atom utilization. Herein, single copper atoms(SCAs) are loaded on macro-porous nitrogen-doped carbon(Cu-NC) derived from zeolitic imidazolate framework-8(ZIF-8), which are used as catalysts for ORR and Pt-supports for MOR. For ORR, the catalyst marked as Cu-NC-3 exhibits a higher peak potential of ...  相似文献   

16.
It remains challenging to rationally synthesize iron/nitrogen-doped carbon (Fe/N-C) catalysts with rich Fe−Nx atomic active sites for improved oxygen reduction reaction (ORR) electrocatalysis. A highly efficient Fe/N-C catalyst, which has been synthesized through a spatial isolation strategy, is reported. Derived from bioinspired polydopamine (PDA)-based hybrid microsphere precursors, it is a multifunctional carrier that loads atomically dispersed Fe3+/Zn2+ ions through coordination interactions and N-rich melamine through electrostatic attraction and covalent bonding. The Zn2+ ions and melamine in the precursor efficiently isolate Fe3+ atoms upon pyrolysis to form rich Fe−Nx atomic active sites, and generate abundant micropores during high-temperature treatment; as a consequence, the resultant Fe-N/C catalyst contains rich catalytically active Fe−Nx sites and a hierarchical porous structure. The catalyst exhibits improved ORR activity that is superior to and close to that of Pt/C in alkaline and acidic solutions, respectively.  相似文献   

17.
Nonprecious-metal-based electrocatalysts with low cost, high activity, and stability are considered as one of the most promising alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR). Herein, an economical and easy-to-fabricate catalyst is developed, that is, Fe/Fe3C embedded in N-doped hollow carbon spheres (Fe/Fe3C/NHCS), which gave the half-wave potential of 0.84 V in 0.1 m KOH, similar to the commercial Pt/C catalyst. Surprisingly, the favorable ORR performance of the as-prepared catalyst was obtained in both acidic and neutral conditions with almost a four-electron pathway and low H2O2 yield, which desirable the development of the proton exchange membrane (PEM) and microbial electrolysis cell (MEC) technology. Additionally, the obtained catalyst demonstrated better long-term stability and high methanol tolerance over a wide range of pH. These features could be mainly attributed to the synergistic effect between Fe/Fe3C and Fe-Nx sites, the hollow structure with mesopores, and the well-dispersed Fe/Fe3C nanoparticles owing to the existence of the abundant hydrophilic groups within the HCS precursor. As such, designing an efficient and cheap ORR catalyst that can operate at alkaline, acidic, and neutral solutions is highly desirable, yet challenging.  相似文献   

18.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

19.
The structured electrode has the advantages of polymer binder-free, non-precious-metal and without multiple and tedious manual assembly, exhibiting superior electro-catalytic activity for oxygen reduction reactions (ORR), compared with the traditional ink-based electrode. The structured CP/Fe-N-CNFs (Fe and N containing carbon nanofibers (CNFs) in-situ grown on carbon paper (CP)), has been one-step synthesized by chemical vapor deposition (CVD). In this paper, it can be concluded that the structured CP/Fe-N-CNFs with 0.30 at.% Fe-N x moieties exerts the most positive onset-potential (?0.05 V), peak potential, and largest peak current density. The measured current density of the structured Fe-N-CNFs at ?0.8 V is increased by 56.3% compared to that of the traditional Fe-N-CNFs. The traditional Fe-N-CNFs exhibit stronger alkaline tolerance comparing with commercial Pt electrode. That is, the pronounced catalytic activity of the structured Fe-N-CNFs might attribute to the homogeneous and undiluted active sites compared to that of the traditional Fe-N-CNFs.  相似文献   

20.
报导了一种由酞菁氧钛、铂金属纳米簇和氮杂化碳纳米角结构基元组装而成的新型纳米复合电化学催化剂(TiOPc-Pt/NSWCNH)的制备、表征及电催化性能. 在TiOPc-Pt/NSWCNH催化剂中, 氮杂化碳纳米角堆积形成多孔导电网络, 铂纳粒子均匀地分散于上述多孔导电网络中, 部分铂纳粒子与TiOPc微晶直接接触. 在甲醇存在的条件下, TiOPc-Pt/NSWCNH对氧还原反应表现出高催化活性和优良的选择性与稳定性. 在甲醇浓度为0.5 mol·L-1的高氯酸水溶液中, TiOPc-Pt/NSWCNH催化氧还原反应的起始电位比商购Pt/C-JM催化剂提高了260 mV, 其质量活性和比活性(0.85 V (参比电极为可逆氢电极(RHE)))分别为83.5 A·g-1和0.294 mA·cm-2, 远高于Pt/C-JM催化剂. 在含氧气氛下, 于甲醇高氯酸水溶液中, 对TiOPc-Pt/NSWCNH和TiOPc-Pt/C催化剂进行了循环伏安法加速老化实验研究(0.6-1.0 V, 15000个循环), 结果表明TiOPc-Pt/NSWCNH具有更高的稳定性. TiOPc-Pt/NCNH催化剂的高耐醇性可能得益于由TiOPc微晶向Pt纳米粒子的电子转移, 其高稳定性主要得益于氮杂化碳纳米角的高石墨化程度及纳米角堆积而成网络结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号