首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ren  Fei  Li  Zeshun  Li  Kai  Zheng  Xiaoyan  Shi  Jianbing  Zhang  Chen  Guo  Heng  Tong  Bin  Xi  Lei  Cai  Zhengxu  Dong  Yuping 《中国科学:化学(英文版)》2021,64(9):1530-1539
Photothermal therapy(PTT) is emerging as an effective treatment for superficial carcinoma. A key challenge to the effectiveness of PTT is to develop photosensitizers with high photothermal conversion efficiency. Aiming to address this challenge, we develop a series of multi-arylpyrrole derivatives with different donors that contain different multi-rotor structures to explore highly efficient PTT photosensitizers. Among these multi-arylpyrrole derivatives, MAP4-FE nanoparticles with a small size of their donor groups and better-donating ability exhibit a high photothermal conversion efficiency(up to 72%) when they are encapsulated by an amphiphilic polymer. As a result, the MAP4-FE nanoparticles have shown satisfactory PTTeffects on in vivo tumor eradication under the guidance of photoacoustic signals. The findings of this study provide significant insights for the development of high-efficiency PTT photosensitizers for cancer treatment by making full use of the nonradiative decay of small size donors as rotors.  相似文献   

2.
3.
4.
5.
The design and application of a scaffolding ligand that promotes branch and diastereoselective hydroformylation of terminal olefins as well as the regio- and diastereoselective hydroformylation of disubstituted olefins is reported. It is shown that the ligand covalently and reversibly bonds to the substrate, allowing for directed hydroformylation. As the substrate ligand interaction is dynamic, hydroformylations are catalytic in ligand and do not require any additional synthetic steps to add or remove the directing group. Using a catalytic quantity of a scaffolding ligand (20-25 mol %), excellent regioselectivity for disubstituted olefins (up to 98:2) and high branch selectivity (up to 88:12) for terminal olefins were obtained.  相似文献   

6.
We introduce a method for ungapped local multiple alignment (ULMA) in a given set of amino acid or nucleotide sequences. This method explores two search spaces using a linked optimization strategy. The first search space M consists of all possible words of a given length W, defined on the residue alphabet. An evolutionary algorithm searches this space globally. The second search space P consists of all possible ULMAs in the sequence set, each ULMA being represented by a position vector defining exactly one subsequence of length W per sequence. This search space is sampled with hill-climbing processes. The search of both spaces are coupled by projecting high scoring results from the global evolutionary search of M onto P. The hill-climbing processes then refine the optimization by local search, using the relative entropy between the ULMA and background residue frequencies as an objective function. We demonstrate some advantages of our strategy by analyzing difficult natural amino acid sequences and artificial datasets. A web interface is available at  相似文献   

7.
Photodynamic therapy typically employs photo-triggered photosensitizers to generate reactive oxygen species to destroy cancer cells. However, the therapeutic effect of photodynamic therapy is often limited owing to the ultrashort diffusion distance of reactive oxygen species and easy efflux of photosensitizers. Herein, we design and synthesize a protein-targeted molecular photosensitizer for highly efficient photodynamic therapy. The designed photosensitizer can covalently bind with the sulfhydryl groups of intracellular proteins to achieve the protein targeting. Under irradiated with near infrared laser, the photosensitizer was locally activated, and the produced reactive oxygen species directly destroy intracellular bioactive proteins, causing cell dysfunction and ultimately inducing cell apoptosis. Significantly, the leakage of molecular photosensitizer is effectually avoided due to the protein targeting. In vivo experimental results indicated that the effect of treatment was efficiently enhanced with the protein-targeted strategy. This work can offer new insights for designing protein-based therapeutic drugs.  相似文献   

8.
Several ultrasound-based platforms for DNA sample preparation were evaluated in terms of effective fragmentation of DNA (plasmid and genomic DNA)—ultrasonic probe, sonoreactor, ultrasonic bath and the newest Vialtweeter device. The sonoreactor showed the best efficiency of DNA fragmentation while simultaneously assuring no cross-contamination of samples, and was considered the best ultrasonic tool to achieve effective fragmentation of DNA at high-throughput and avoid sample overheating. Several operation variables were studied—ultrasonication time and amplitude, DNA concentration, sample volume and sample pre-treatment—that allowed optimisation of a sonoreactor-based strategy for effective DNA fragmentation. Optimal operating conditions to achieve DNA fragmentation were set to 100% ultrasonic amplitude, 100 μL sample volume, 8 min ultrasonic treatment (2 min/sample) for a DNA concentration of 100 μg mL−1. The proposed ultrasonication strategy can be easily implemented in any laboratory setup, providing fast, simple and reliable means for effective DNA sample preparation when fragmentation is critical for downstream molecular detection and diagnostics protocols.  相似文献   

9.
We introduce a novel class of water soluble, extended conjugation boradiazaindacene dyes which are efficient singlet oxygen generators and have spectacular photoinduced cytotoxicity when excited in the "therapeutic window" of the electromagnetic spectrum.  相似文献   

10.
Inflammation represents a real micromilieu of many diseases as well as the actual application environment of nanocarriers. However, few studies have focused on the influence of the inflammatory environment on the effects of nanoparticle delivery. Herein, a novel inflammation self-adaptive nanocarrier is designed and fabricated by attaching the ascorbyl palmitate (AP) onto the surface of gene-entrapped polymeric nanocomplexes through the formation of phenylboronate bond. In vitro and in vivo studies demonstrate that the introduction of AP enhances considerably the accumulation of entrapped gene in inflammation and facilitates the intracellular uptake of gene-loading nanoparticles. Meanwhile, the gene transfection efficiency of DNA and in vivo gene therapy of nanocomplexes under an inflammation stimulus is significantly enhanced. Hence, our delicate design concept opens up a new pathway to develop an inflammation self-adaptive drug delivery system for precise drug/gene delivery and therapy.  相似文献   

11.
Processing plants can produce large amounts of data that process engineers use for analysis, monitoring, or control. Principal component analysis (PCA) is well suited to analyze large amounts of (possibly) correlated data, and for reducing the dimensionality of the variable space. Failing online sensors, lost historical data, or missing experiments can lead to data sets that have missing values where the current methods for obtaining the PCA model parameters may give questionable results due to the properties of the estimated parameters. This paper proposes a method based on nonlinear programming (NLP) techniques to obtain the parameters of PCA models in the presence of incomplete data sets. We show the relationship that exists between the nonlinear iterative partial least squares (NIPALS) algorithm and the optimality conditions of the squared residuals minimization problem, and how this leads to the modified NIPALS used for the missing value problem. Moreover, we compare the current NIPALS‐based methods with the proposed NLP with a simulation example and an industrial case study, and show how the latter is better suited when there are large amounts of missing values. The solutions obtained with the NLP and the iterative algorithm (IA) are very similar. However when using the NLP‐based method, the loadings and scores are guaranteed to be orthogonal, and the scores will have zero mean. The latter is emphasized in the industrial case study. Also, with the industrial data used here we are able to show that the models obtained with the NLP were easier to interpret. Moreover, when using the NLP many fewer iterations were required to obtain them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
[reaction: see text] A versatile, efficient, and simple method for the preparation of various 1-chloroethyl phosphates and phosphoramidates is described. The protected chlorophosphates or phosphoramidates are synthesized to the vinyl derivative under mild conditions, followed by conversion to the chloroethylidene phosphate or phosphoramidate by dry HCl gas, resulting in good to excellent yields. 1-Chloroethyl phosphates and phosphoramidates are excellent building blocks for the synthesis of novel ethylidene-linked phosphate prodrugs.  相似文献   

13.
14.
We designed highly efficient porphyrin sensitizers with two phenyl groups at meso-positions of the macrocycle bearing two ortho-substituted long alkoxyl chains for dye-sensitized solar cells; the ortho-substituted devices exhibit significantly enhanced photovoltaic performances with the best porphyrin, LD14, showing J(SC) = 19.167 mA cm(-2), V(OC) = 0.736 V, FF = 0.711, and overall power conversion efficiency η = 10.17%.  相似文献   

15.
A novel method for the efficient discovery of new types of minor actinide (MA) ligands is based on the unique combination of "tea bag" split pool combinatorial chemistry and screening based on the inherent radioactivity of the complexed cations. Four multicoordinating Am(3+) chelating groups, such as CMPO (diphenylcarbamoylmethyl)phosphine oxide), PICO (picolinamide), DGA (N,N'-dimethyldiglycoldiamide), and MPMA (N-methyl-N-phenylmalonamide), on a trityl platform immobilized on TentaGelS served as a model library for the development of the screening method. This model library was screened under various conditions (i.e., 0.001 M < or = [HNO3] < or = 3 M, NaNO3 < or = 4 M, and [Eu] < or = 10 x [ligand]) showing competitive extraction of the four ligands. Other libraries of 9 and 72 members were synthesized by functionalization of the trityl platform with ligating groups that are composed of four building blocks (including at least one amide and one (phosphoric) hydrazone moiety). The screening of these two libraries resulted in the discovery of two multicoordinate ligands that contain ligating groups previously not known to complex Am(3+). Both are N-isopropyl amides terminated with a p-methoxyphenyl hydrazide (A2B1C1D10 K(D(Am)) = 2197) or a p-nitrophenyl hydrazide (A2B1C1D11 K(D(Am)) =1989) moiety, respectively. They are more efficient than the immobilized tritylCMPO ligand (K(D(Am)) = 1280) at 3 M HNO3. This method has the advantages of a high analytical sensitivity and the direct comparison of the extraction results. The method also allows the competitive screening of multiple nuclides which can be quantified by their radioactive emission spectrum.  相似文献   

16.
The synergetic combination of defect engineering and graphene coupling enables to develop an effective way of exploring efficient bifunctional electrocatalyst/electrode materials. Defect-engineered amorphous MoO2-reduced graphene oxide (rGO) nanohybrid was synthesized by soft-chemical reduction of K2MoO4 in graphene oxide colloids. Mo K-edge X-ray absorption spectroscopy clearly demonstrates the rutile-type local atomic structure of amorphous MoO2 with significant oxygen vacancies and intimate electronic coupling with rGO. The defect-introduced MoO2-rGO nanohybrid shows excellent bifunctionality as electrocatalyst for hydrogen evolution reaction and electrode for sodium-ion batteries, which are superior to those of crystalline MoO2-rGO homologue. The beneficial effect of simultaneous defect control and rGO coupling can be ascribed to the provision of oxygen vacancies acting as active sites, the increase of electrical conductivity, and the improvement of reaction kinetics.  相似文献   

17.
D-A copolymerization is a broadly utilized molecular design strategy to construct high efficiency photovoltaic materials for polymer solar cells (PSCs),and all the D-A copolymer donors reported till now are the alternate D-A copolymers with equal D-and A-units.Here,we first propose a non-equivalent D-A copolymerization strategy with unequal D-and A-units,and develop three novel non-equivalent D-A copolymer donors (PM6-D1,PM6-D2 and PM6-D3 with D/A unit ratio of 1.1:0.9,1.2:0.8 and1.3:0.7,respectively) by inserting more D units into the alternate D-A copolymer PM6 backbone to finely tune the physicochemical and photovoltaic properties of the polymers.The three non-equivalent D-A copolymers show the down-shifted highest occupied molecular orbital (HOMO) energy levels,higher hole mobility,higher degree of molecular self-assembly and higher molecular crystallinity with the increase of D-unit ratio in comparison with the alternate D-A copolymer PM6.As a result,all the three non-equivalent D-A copolymer-based PSCs with Y6 as acceptor achieve improved power conversion efficiency (PCE)with higher V_(oc),larger J_(sc)and higher FF simultaneously.Particularly,the PM6-D1:Y6 based PSC achieved a high PCE of17.71%,which is significantly higher than that (15.82%) of the PM6:Y6 based PSC and is one of the highest performances in the binary PSCs.  相似文献   

18.
We demonstrate that core–shell multi-component nanocomposites can be grown in situ at room temperature by a novel one-step approach without adding any reductant and stabilizer. We have presented a one-step method for the synthesis of multi-component nanocomposites in water solution, the multi-component nanocomposites could be produced directly and quickly in an in situ wet-chemical reaction. Here, Au–polypyrrole (PPy)/Prussian blue (PB) nanocomposites have been synthesized successfully under the same circumstance. With the addition of pyrrole monomers into mixture solutions, the autopolymerization of pyrrole into PPy and AuCl4 was reduced to elemental Au instantaneously as well as simultaneously. At the same time, PB produced along with elemental Au serving as a catalyst. Furthermore, we investigated the performance of Au–PPy/PB nanocomposites as amperometric sensor toward the reduction of H2O2, which displayed high sensitivity, fast response and good stability. The peak current of H2O2 increased linearly with the concentration of H2O2 in the range from 2.5 × 10−9 to 1.2 × 10−6 M, and the low detection limit of 8.3 × 10−10 M (S/N = 3) was obtained. Therefore, this work provides a new pathway to design and fabricate novel multi-component nanocomposites, which have unique characteristics and hold great applications in the fields of sensors, electrocatalysis and others.  相似文献   

19.
Wu Y  Zhang H  Zhao Y  Zhao J  Chen J  Li L 《Organic letters》2007,9(7):1199-1202
[structure: see text]. An efficient and stereoselective strategy for the total synthesis of podophyllotoxin was developed. This route leads to podophyllotoxin 1 in only 12 steps with 29% overall yield. A notable feature of this synthetic strategy is the use of the cascade addition-alkylation to ensure the key C1-C2 stereochemistry that is pivotal for the synthesis of podophyllotoxin.  相似文献   

20.
We developed a sequential strand-displacement strategy for multistep DNA-templated synthesis (DTS) and used it to mediate an efficient six-step DTS that proceeded in 35% overall yield (83% average yield per step). The efficiency of this approach and the fact that the final product remains linked to a DNA sequence that fully encodes its reaction history suggests its utility for the translation of DNA sequences into high-complexity synthetic libraries suitable for in vitro selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号