首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among photothermal, photovoltaic and photochemical techniques, photochemistry is superior in energy storage and transportation by converting photons into chemical fuels. Recently plasmonic photocatalysis, based on localized surface plasmon resonance (LSPR) generated from noble metal nanostructures, has attracted much attention. It promotes photochemical reaction efficiency by optimizing the solar spectrum absorption and the surface reaction kinetics. The deeper understanding is in urgent need for the development of novel plasmonic photocatalysts. Surface-enhanced Raman spectroscopy (SERS), which is also originated from the LSPR effect, provides an excellent opportunity to probe and monitor plasmonic photoreactions in situ and in real-time, with a very high surface sensitivity and energy resolution. Here, fundamentals of plasmonic photocatalysis and SERS are first presented based on their connections to the LSPR effect. Following by a validity analysis, latest studies of SERS applied for the plasmon mediated photochemical reaction are reviewed, focusing on the reaction kinetics and mechanism exploration. Finally, limitations of the present study, as well as the future research directions, are briefly analyzed and discussed.  相似文献   

2.
This review focuses on the research progress of non-noble-metal materials with nanostructures for plasmonic biosensing. Firstly, the physical and sensing principles of localized surface plasmon resonance (LSPR) sensors are briefly introduced; then non-noble-metal materials, such as copper, aluminum, semiconductor, graphene and other materials, for plasmonic sensing are categorized and presented. Finally, a rational discussion about the future prospective of novel materials for plasmonic sensing is given.  相似文献   

3.
The ability of plasmonic nanostructures to efficiently harvest light energy and generate energetic hot carriers makes them promising materials for utilization in photocatalytic water spitting.Apart from the traditional Au and Ag based plasmonic photocatalysts,more recently the noble-metal-free alternative plasmonic materials have attracted ever-increasing interest.Here we report the first use of plasmonic zirconium nitride(ZrN) nanoparticles as a promising photocatalyst for water splitting.Highl...  相似文献   

4.
Recent advances in direct‐use plasmonic‐metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible‐light irradiation have attracted great interest. Plasmonic‐metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic‐metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light‐excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic‐metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.  相似文献   

5.
Plasmonic metal nanostructures have been incorporated into semiconductors to enhance the solar-light harvesting and the energy-conversion efficiency. So far the mechanism of energy transfer from the plasmonic metal to semiconductors remains unclear. Herein the underlying plasmonic energy-transfer mechanism is unambiguously determined in Au@SiO(2)@Cu(2)O sandwich nanostructures by transient-absorption and photocatalysis action spectrum measurement. The gold core converts the energy of incident photons into localized surface plasmon resonance oscillations and transfers the plasmonic energy to the Cu(2)O semiconductor shell via resonant energy transfer (RET). RET generates electron-hole pairs in the semiconductor by the dipole-dipole interaction between the plasmonic metal (donor) and semiconductor (acceptor), which greatly enhances the visible-light photocatalytic activity as compared to the semiconductor alone. RET from a plasmonic metal to a semiconductor is a viable and efficient mechanism that can be used to guide the design of photocatalysts, photovoltaics, and other optoelectronic devices.  相似文献   

6.
Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron-hole (e(-)-h(+) ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble metal NPs such as Ag NPs function as visible-light harvesting and electron-generating centers during the daylight photocatalysis of AgBr@Ag. Novel Ag plasmonic photocatalysis could cooperate with the conventional AgBr semiconductor photocatalysis to enhance the overall daylight activity of AgBr@Ag greatly because of an interesting synergistic effect. After a systematic investigation of the daylight photocatalysis mechanism of AgBr@Ag, the synergistic effect was attributed to surface plasmon resonance induced local electric field enhancement on Ag, which can accelerate the generation of e(-)-h(+) pairs in AgBr, so that more electrons are produced in the conduction band of AgBr under daylight irradiation. This study provides new insight into the photocatalytic mechanism of noble metal/semiconductor systems as well as the design and fabrication of novel plasmonic photocatalysts.  相似文献   

7.
The bright colours of noble metal particles have attracted considerable interest since historical times, where they were used as decorative pigments in stained glass windows. More recently, the tuneable optical properties of metal nanoparticles and their addressability via spectroscopic techniques have brought them back into the forefront of fundamental and applied research fields. Much of the recent attention concerning metal nanoparticles such as gold and silver has been their use as small-volume, ultra-sensitive label-free optical sensors. Plasmonic nanoparticles act in this case as transducers that convert changes in the local refractive index into spectral shifts of the localized surface plasmon resonance (LSPR) band. This LSPR-shift assay is a general technique for measuring binding affinities and rates from any molecule that induces a change in the local refractive index around the metallic nanostructures. By attaching molecular recognition elements (chemical or biological ligands) on the nanostructures, specificity and selectivity to the analyte of interest are introduced into the nanosensor. In this review, we will discuss the different methods used to fabricate plasmonic nanosensors. A special emphasis will be given to techniques used to link plasmonic nanostructures to surfaces. While the difference between colorimetric and refractive index sensing approaches will be briefly described, the importance to distinguish between bulk refractive index (RI) sensing and molecular near-field refractive index sensing will be discussed. The recent progress made in the development of novel surface functionalization strategies together with the formation of optically and mechanically stable LSPR sensors will be highlighted.  相似文献   

8.
Plasmonic noble metal nanostructures have been targeted due to their strong surface plasmon resonance at photoelectrochemical interfaces. Recently, it has been concluded that, the plasmonic noble metal nanostructures on photoexcitation permit the transfer of effective hot carriers (hot electron/hole pair) to nearby adsorbed molecules where, the transformed hot carriers can efficiently decrease the activation barrier of a reaction. In this review, our recent achievements in the plasmon-mediated chemical reactions of organic molecules such as para-aminothiophenol, substituted para-aminothiophenol and para-nitrothiophenol at nanostructures modified noble metal electrodes using surface enhanced Raman spectroscopy, electrochemical methods, and theoretical calculations will be discussed.  相似文献   

9.
The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all‐solution‐processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic‐enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible‐light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade‐off for enhanced near‐band‐edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.  相似文献   

10.
基于局域表面等离子体共振效应的光学生物传感器*   总被引:1,自引:0,他引:1  
肖桂娜  蔡继业 《化学进展》2010,22(1):194-200
贵金属纳米粒子表现出许多常规块体材料所不具备的优异性能,其中局域表面等离子体共振 (LSPR) 特性是研究热点之一。LSPR 的形状和位置与纳米粒子的组成、大小、形状、介电性质以及局域介质环境密切相关。基于这一特性,贵金属纳米粒子已广泛应用于光学生物传感器、光过滤器和表面增强光谱等领域。本文对各种结构的贵金属纳米粒子的制备方法及其在光学生物传感器中的应用进行了综述,并对 LSPR 纳米传感器的未来发展前景做了展望。  相似文献   

11.
《化学:亚洲杂志》2017,12(23):2980-2984
Two‐dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible‐light region with physical or chemical methods still remains challenging. In this work, we design a simple room‐temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO3−x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near‐infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light–matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future.  相似文献   

12.
Plasmon‐mediated carrier transfer (PMCT) at metal–semiconductor heterojunctions has been extensively exploited to drive photochemical reactions, offering intriguing opportunities for solar photocatalysis. However, to date, most studies have been conducted using noble metals. Inexpensive materials capable of generating and transferring hot carriers for photocatalysis via PMCT have been rarely explored. Here, we demonstrate that the plasmon excitation of nickel induces the transfer of both hot electrons and holes from Ni to TiO2 in a rationally designed Ni–TiO2 heterostructure. Furthermore, it is discovered that the transferred hot electrons either occupy oxygen vacancies (VO) or produce Ti3+ on TiO2, while the transferred hot holes are located on surface oxygens at TiO2. Moreover, the transferred hot electrons are identified to play a primary role in driving the degradation of methylene blue (MB). Taken together, our results validate Ni as a promising low‐cost plasmonic material for prompting visible‐light photochemical reactions.  相似文献   

13.
The synergistic effect between metal and TiO2 nanoparticles brings about new, enhanced functionalities for a myriad of applications, ranging from labeling and sensing to catalysis and surface‐enhanced Raman scattering. Although extensive work has been done in the preparation of concentric TiO2‐coated metal nanostructures, current methods for the synthesis of noncentrosymmetric morphologies are still very limited. This Focus review summarizes the various methods used to prepare TiO2‐coated metal nanostructures, with a particular emphasis on noncentrosymmetric morphologies, their novel plasmonic properties, and their promising applications in the fields of catalysis and photocatalysis.  相似文献   

14.
The efforts to produce photocatalysts operating efficiently under visible light have led to a number of plasmonic photocatalysts, in which noble metal nanoparticles are deposited on the surface of polar semiconductor or insulator particles. In the metal-semiconductor composite photocatalysts, the noble metal nanoparticles act as a major component for harvesting visible light due to their surface plasmon resonance while the metal-semiconductor interface efficiently separates the photogenerated electrons and holes. In this article, we survey various plasmonic photocatalysts that have been prepared and characterized in recent years.  相似文献   

15.
Localized surface plasmon resonance (LSPR) excitation of noble metal nanoparticles has been shown to accelerate and drive photochemical reactions. Here, LSPR excitation is shown to enhance the electrocatalysis of a fuel‐cell‐relevant reaction. The electrocatalyst consists of PdxAg alloy nanotubes (NTs), which combine the catalytic activity of Pd toward the methanol oxidation reaction (MOR) and the visible‐light plasmonic response of Ag. The alloy electrocatalyst exhibits enhanced MOR activity under LSPR excitation with significantly higher current densities and a shift to more positive potentials. The modulation of MOR activity is ascribed primarily to hot holes generated by LSPR excitation of the PdxAg NTs.  相似文献   

16.
纳米颗粒具有明显区别于块体材料的新奇特性,本文利用透射电镜观察,描述并讨论一种发生在贵金属(Au、Ag、Pd和Pt)和硫化银(Ag_2S)构成的核壳结构纳米颗粒中的有趣现象,即贵金属在Ag_2S纳米颗粒中由内向外的迁移。迁移可在室温下进行,其最终结果使最初的核壳结构颗粒演变成由贵金属和Ag_2S构成的异质纳米二聚体结构,如Au-Ag_2S、Ag-Ag_2S、PdAg_2S和Pt-Ag_2S。电镜表征表面实验条件下贵金属在Ag_2S的迁移类似于一种整体迁移的模式且迁移过程中伴随着颗粒形貌结构的演变。贵金属在Ag_2S中的经空位互换的扩散机制或半导体纳米颗粒的自纯化机制可以用来解释这种迁移现象。  相似文献   

17.
The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also have important consequences for photocatalysis. Here the effect of silver nanoparticles of a size up to 30 nm and at maximum 0.50 monolayers on the photocatalytic oxidation of ethylene on TiO2 is studied. Since the plasmon resonance energy of silver nanoparticles is comparable with the TiO2 band gap, dipole-dipole interaction converts excitons into heat at the silver nanoparticle. This indicates that plasmonic interaction with TiO2 semiconductor catalysts can reduce the photo catalytic activity considerably.  相似文献   

18.
TiO2 has received tremendous attention owing to its potential applications in the field of photocatalysis for solar fuel production and environmental remediation. This review mainly describes various modification strategies and potential applications of TiO2 in efficient photocatalysis. In past few years, various strategies have been developed to improve the photocatalytic performance of TiO2, including noble metal deposition, elemental doping, inorganic acids modification, heterojunctions with other semiconductors, dye sensitization and metal ion implantation. The enhanced photocatalytic activities of TiO2-based material for CO2 conversion, water splitting and pollutants degradation are highlighted in this review.  相似文献   

19.
Controlling the interaction of polarization light with an asymmetric nanostructure such as a metal/semiconductor heterostructure provides opportunities for tuning surface plasmon excitation and near-field spatial distribution. However, light polarization effects on interfacial charge transport and the photocatalysis of plasmonic metal/semiconductor photocatalysts are unclear. Herein, we reveal the polarization dependence of plasmonic charge separation and spatial distribution in Au/TiO2 nanoparticles under 45° incident light illumination at the single-particle level using a combination of photon-irradiated Kelvin probe force microscopy (KPFM) and electromagnetic field simulation. We quantitatively uncover the relationship between the local charge density and polarization angle by investigating the polarization-dependent surface photovoltage (SPV). The plasmon-induced photocatalytic activity is enhanced when the polarization direction is perpendicular to the Au/TiO2 interface.  相似文献   

20.
Recently, it has been established that the localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles can be put toward the acceleration and control of molecular transformations. This field, named plasmonic catalysis, has emerged as a new frontier in nanocatalysis. For metals such as silver (Ag), gold (Au), and copper (Cu), the LSPR excitation can take place in the visible and near-infrared ranges, opening possibilities for the conversion of solar to chemical energy and new/alternative reaction pathways not accessible via conventional, thermally activated catalytic processes. As both catalytic and optical properties can be tuned by controlling several physical and chemical parameters at the nanoscale, design-controlled nanomaterials open the door to unlock the potential of plasmonic catalysis both in terms of fundamental understanding and optimization of performances. In this context, after introducing the fundamentals of plasmonic catalysis, we provide an overview on the current understanding of this field enabled by the utilization of designed-controlled nanostructures based on plasmonic and catalytic metals as model systems. We start by discussing trends in plasmonic catalytic performances and their correlation with nanoparticle size, shape, composition, and structure. Then, we highlight how multimetallic compositions and morphologies containing both catalytic and plasmonic components enables one to extend the use of plasmonic catalysis to metals that are important in catalysis but do not support LSPR excitation in the visible range. Finally, we focus on key challenges and perspectives that are critically important to assist us in designing future energy-efficient plasmonic-catalytic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号