首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from the atmosphere and convert it into useful industrial products such as methane, methanol, formate, ethanol, and so forth. Single-atom site catalysts (SACs) featuring maximum theoretical atom utilization and a unique electronic structure and coordination environment have emerged as promising candidates for use in the CO2RR. The electronic properties and atomic structures of the central metal sites in SACs will be changed significantly once the types or coordination environments of the central metal sites are altered, which appears to provide new routes for engineering SACs for CO2 electrocatalysis. Therefore, it is of great importance to discuss the structural regulation of SACs at the atomic level and their influence on CO2RR activity and selectivity. Despite substantial efforts being made to fabricate various SACs, the principles of regulating the intrinsic electrocatalytic performances of the single-atom sites still needs to be sufficiently emphasized. In this perspective article, we present the latest progress relating to the synthesis and catalytic performance of SACs for the electrochemical CO2RR. We summarize the atomic-level regulation of SACs for the electrochemical CO2RR from five aspects: the regulation of the central metal atoms, the coordination environments, the interface of single metal complex sites, multi-atom active sites, and other ingenious strategies to improve the performance of SACs. We highlight synthesis strategies and structural design approaches for SACs with unique geometric structures and discuss how the structure affects the catalytic properties.

Electrochemical CO2 reduction reaction (CO2RR) is a promising way to remove CO2 and convert it into useful industrial products. Single-atom site catalysts provide opportunities to regulate the active sites of CO2RR catalysts at the atomic level.  相似文献   

2.
单原子催化剂(SACs)兼具均相与多相催化剂的双重优势, 表现出最大化的原子利用率、 超高的本征活性与选择性以及易与产物分离的特点, 受到人们的广泛关注. 然而, 由于单个原子较高的表面能以及不稳定性, 设计与制备单原子催化剂仍是一大挑战. 本文综合评述了近年来单原子催化剂的稳定化策略、 高载量催化剂的制备方法以及批量制备技术等方面的关键研究进展, 并简要分析了单原子催化剂未来发展所面临的问题与挑战, 最后对单原子催化的发展方向进行了展望.  相似文献   

3.
《中国化学快报》2023,34(6):107959
Metal-based catalysis, including homogeneous and heterogeneous catalysis, plays a significant role in the modern chemical industry. Heterogeneous catalysis is widely used due to the high efficiency, easy catalyst separation and recycling. However, the metal-utilization efficiency for conventional heterogeneous catalysts needs further improvement compared to homogeneous catalyst. To tackle this, the pursing of heterogenizing homogeneous catalysts has always been attractive but challenging. As a recently emerging class of catalytic material, single-atom catalysts (SACs) are expected to bridge homogeneous and heterogeneous catalytic process in organic reactions and have arguably become the most active new frontier in catalysis field. In this review, a brief introduction and development history of single-atom catalysis and SACs involved organic reactions are documented. In addition, recent advances in SACs and their practical applications in organic reactions such as oxidation, reduction, addition, coupling reaction, and other organic reactions are thoroughly reviewed. To understand structure-property relationships of single-atom catalysis in organic reactions, active sites or coordination structure, metal atom-utilization efficiency (e.g., turnover frequency, TOF calculated based on active metal) and catalytic performance (e.g., conversion and selectivity) of SACs are comprehensively summarized. Furthermore, the application limitations, development trends, future challenges and perspective of SAC for organic reaction are discussed.  相似文献   

4.
邱卓  姚立华  杨智 《分子催化》2023,37(6):569-586
利用电催化技术开发新型能源,是替代传统能源的一种新策略,大量使用化石燃料导致的环境问题有望会通过此技术的发展而得到良好解决,设计并制备出高效稳定的电催化剂对于新型能源技术开发应用至关重要.单原子催化剂(SACs)在载体上具有原子分布的活性位点,是催化领域的新兴材料,具有美好的应用前景,现已成为电催化领域的研究热点.在此综述中,详细阐述了单原子电催化剂的一般载体、制备方法及其先进表征方法,系统总结了单原子电催化剂在能量转化和环境保护(CO2还原、水裂解)方面的应用.同时,基于各种单原子催化剂研究的最新进展,简单阐述了催化机制,讨论了单原子催化剂在电催化方向的发展挑战和前景,希望为单原子电催化剂的合成、设计和应用提供经验,以更好地促进电催化能量转换方面的发展.  相似文献   

5.
单原子催化剂的催化活性高, 稳定性强, 原子利用率高, 在能源电催化领域已被广泛研究. 然而, 粉末状(颗粒状)单原子催化材料存在工作电极制备过程复杂、 黏结剂添加降低导电性且占据催化材料的体积、 活性位点易被包埋等问题, 在作为电极材料催化能源转化过程时, 载量通常小于1 mg/cm2, 反应电流密度不高于100 mA/cm2. 与单原子催化剂相比, 自支撑单原子膜电极不仅具有单原子催化剂的诸多优势, 同时展现出整体式电极的特点, 例如无需添加黏结剂、 导电性好、 单原子活性位点暴露率高、 形貌与孔结构可调控等, 在大电流电催化反应、 高能量高功率密度电池等领域拥有应用前景. 本文综合评述了面向能源电催化应用的自支撑单原子膜电极的研究进展, 讨论了自支撑单原子膜电极的优势, 总结了自支撑单原子膜电极的合成方法, 包括自支撑基底上原位制备法、 静电纺丝法、 自组装法、 化学气相沉积与固相扩散法等, 介绍了其在析氢反应、 析氧反应、 电化学制过氧化氢反应、 锌空电池、 二氧化碳还原反应及锂硫电池中的应用, 并对该类电极的发展方向进行了展望.  相似文献   

6.
《中国化学快报》2023,34(6):107681
Single atom catalysts (SACs) with atomically dispersed transition metals on nitrogen-doped carbon supports have recently emerged as highly active non-noble metal electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), showing great application potential in Zn-air batteries. However, because of the complex structure-performance relationships of carbon-based SACs in the oxygen electrocatalytic reactions, the contribution of different metal atoms to the catalytic activity of SACs in Zn-air batteries still remains ambiguous. In this study, SACs with atomically dispersed transition metals on nitrogen-doped graphene sheets (M-N@Gs, M = Co, Fe and Ni), featured with similar physicochemical properties and M-N@C configurations, are obtained. By comparing the on-set potentials and the maximum current, we observed that the ORR activity is in the order of Co-N@G > Fe-N@G > Ni-N@G, while the OER activity is in the order of Co-N@G > Ni-N@G > Fe-N@G. The Zn-air batteries with Co-N@G as the air cathode catalysts outperform those with the Fe-N@G and Ni-N@G. This is due to the accelerated charge transfer between Co-N@C active sites and the oxygen-containing reactants. This study could improve our understanding of the design of more efficient bifunctional electrocatalysts for Zn-air batteries at the atomic level.  相似文献   

7.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   

8.
This work chooses Cu/Fe single-atom catalysts(SACs) with weak/strong oxygen affinity to clarify the effect of dual-atom configuration on oxygen reduction reaction(ORR) performance based on density functional theory(DFT) calculations. The stability and ORR activity of single or dual Cu/Fe atomic sites anchored on nitrogen-doped graphene sheets(Cu-N4-C, Cu2-N6-C, Fe-N4-C, and Fe2-N6-C) are investigated, and the results indicate the dual-atom catalysts(Cu2-N6-C and Fe2-N6-C) are thermodynamically stable enough to avoid sintering and aggregation. Compared with single-atom active sites of Cu-N4-C, which show weak oxygen affinity and poor ORR performance with a limiting potential of 0.58 V, the dual-Cu active sites of Cu2-N6-C exhibit enhanced ORR activity with a limiting potential up to 0.87 V due to strengthened oxygen affinity. Interestingly, for Fe SACs with strong oxygen affinity, the DFT results show that the dual-Fe sites stabilize the two OH* ligands structure[Fe2(OH)2-N6-C], which act as the active sites during ORR process, resulting in greatly improved ORR performance with a limiting potential of 0.90 V. This study suggests that the dual-atom design is a potential strategy to improve the ORR performance of SACs, in which the activity of the single atom active sites is limited with weak or strong oxygen affinity.  相似文献   

9.
氧还原反应(ORR)在电化学能量存储和转换系统以及精细化学制剂的清洁合成中发挥着重要作用. 然而, ORR过程的动力学极其缓慢, 需要使用铂族贵金属催化剂加快其反应动力学速率. 铂基催化剂的高成本严重阻碍了其大规模的商业化. 由于单原子催化剂(SACs)具有结构明确、 本征活性高和原子效率高的特点, 有望取代昂贵的铂族贵金属催化剂. 迄今, 在进一步提高SACs的ORR活性方面已有大量的研究报道, 包括定制金属中心的配位结构、 丰富金属中心的浓度以及设计衬底的电子结构和孔隙率等. 本文综合评述了近年来SACs在ORR性能以及与ORR相关的H2O2生产、 金属-空气电池和低温燃料电池等方面的应用研究进展. 总结了通过引入其它金属或配体来调整孤立金属中心的配位结构、 通过增加金属负载来增加单原子位点的浓度以及通过优化载体的孔隙度来优化催化性能和电子传输等方面的研究进展, 并对SCAs的未来发展方向和面临的挑战提出了展望.  相似文献   

10.
Lithium–sulfur(Li-S) batteries are regarded as one of the most promising energy storage devices because of their low cost, high energy density, and environmental friendliness. However, Li-S batteries suffer from sluggish reaction kinetics and serious “shuttle effect” of lithium polysulfides(LiPSs), which causes rapid decay of battery capacity and prevent their practical application. To address these problems, introducing single-atom catalysts(SACs) is an effective method to improve the electroch...  相似文献   

11.
Nanomaterials with enzyme-like activities, coined nanozymes, have been researched widely as they offer unparalleled advantages in terms of low cost, superior activity, and high stability. The complex structure and composition of nanozymes has led to extensive investigation of their catalytic sites at an atomic scale, and to an in-depth understanding of the biocatalysis occurring. Single-atom catalysts (SACs), characterized by atomically dispersed active sites, have provided opportunities for mimicking metalloprotease and for bridging the gap between natural enzymes and nanozymes. In this Minireview, we illustrate the unique properties of nanozymes and we discuss recent advances in the synthesis, characterization, and applications of SACs. Subsequently, we outline the impressive progress made in single-atom nanozymes and we discuss their applications in sensing, degradation of organic pollutants, and in therapeutic roles. Finally, we present the major challenges and opportunities remaining for a successful marriage of nanozymes and SACs.  相似文献   

12.
Clean energy innovation has triggered the development of single-atom catalysts(SACs) due to their excellent catalytic activity, high tunability and low cost. The success of SACs for many catalytic reactions has opened a new field, where the fundamentals of catalytic property-structure relationship at atomic level await exploration, and thus raises challenges for structural characterization. Among the characterization techniques for SACs, aberration-corrected transmission electron microscopy(TEM) has become an essential tool for direct visualization of single atoms. In this review, we briefly summarize recent studies on SACs using advanced TEM. We first introduce TEM methods, which are particularly important for SACs characterization, and then discuss the applications of advanced TEM for SAC characterization, where not only atomic dispersion of single atoms can be studied, but also the distribution of elements and the valence state with local coordination can be resolved. We further extend our review towards in-situ TEM, which has increasing importance for the fundamental understanding of catalytic mechanism. Perspectives of TEM for SACs are finally discussed.  相似文献   

13.
80%以上的工业生产过程涉及催化,如化工生产、能源转换、制药和废物处理等等.催化剂的使用显著提高了生产效率,降低了生产成本,为国民经济、地球环境和人类文明的可持续发展做出了很大贡献.为了满足日益增长的生产需求和最大的经济效益,开发高效、稳定、低成本的新型催化剂已成为当务之急.金属中心负载在载体上的负载型金属催化剂因其较好的催化活性和相对较低的金属用量而受到广泛关注.研究发现,负载型结构可增强传热和传质并增加活性金属中心的分散度,从而影响催化性能.此外,负载金属的颗粒尺寸对催化剂的性能有很大影响.迄今为止,科学家们一直在通过减小金属颗粒尺寸和提高原子利用效率来提高催化剂的活性.原子级尺寸的颗粒通常表现出与大尺寸颗粒显着不同的物理和化学性质,而当活性位点的尺寸缩小到单个原子时,单原子催化剂的概念应运而生.对于单原子催化剂,金属原子中心通过配位被载体中的缺陷锚定,从而调整金属原子的电子云分布.这种配位调整使得单原子催化剂拥有与传统催化剂不同的性能.作为催化领域的新前沿,单原子催化剂已经在许多催化反应中表现出前所未有的活性和选择性.然而,许多报道的单原子催化剂在高温环境或长期催化应用中容易受到奥斯特瓦尔德熟化过程的影响,从而导致催化剂烧结和失活.而烧结的原因在于金属原子和载体之间较弱的相互作用.失活催化剂的再生和回收将大大增加工业生产的时间和经济成本.因此,开发具有优异热稳定性的单原子催化剂以满足工业需求是十分必要的.本综述首先总结了近年来关于热稳定型单原子催化剂合成方法的基础研究,并从原子尺度上分析了这些方法所构建的金属中心的结构形态和配位环境.此外,结合近些年的研究中新的表征技术与理论计算手段解释了热稳定性的来源.重点讨论了热稳定单原子催化剂的实际催化应用.分析了热稳定单原子催化剂在热催化应用中的独特作用机理、并尝试为确定催化过程中真正的活性中心以及通过原子级调控手段进行高活性热稳定单原子催化剂的合成提供理论指导.最后总结了热稳定单原子催化剂发展的主要问题,并简要分析了单原子催化领域的研究挑战和发展前景.  相似文献   

14.
过去十年见证了单原子催化领域的快速发展,其最高的原子利用效率和充分暴露的活性位点使得单原子催化剂对众多反应的催化活性具有显著提升。在单原子催化领域的早期发展阶段,研究者只是关注单原子催化剂催化活性与催化选择性的提高,而其内在的反应机理以及活性位点同催化性能之间的构效关系往往被忽视。关于单原子催化剂中金属-基底相互作用的深入探讨能够帮助我们理解催化机理,并进一步指导多相催化剂的理性设计。值得注意的是,由于单原子催化剂均一的活性位点及其几何构型,我们可以通过理论计算以及一些原位的表征技术,来揭示其中的金属-基底相互作用,继而进一步促进单原子催化领域的发展以及多相催化剂的理性设计。这篇综述总结了金属-基底相互作用的基本概念,其作用,以及其在一些重要多相催化中的应用,最后提出了金属-基底相互作用在单原子催化领域所面临的挑战与机遇。  相似文献   

15.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

16.
Single-atom catalysts (SACs) have emerged as a new frontier in areas such as electrocatalysis, photocatalysis, and enzymatic catalysis. Aided by recent advances in the synthetic methodologies of nanomaterials, atomic characterization technologies, and theoretical calculation modeling, various SACs have been prepared for a variety of catalytic reactions. To meet the requirements of SACs with distinctive performance and appreciable selectivity, much research has been carried out to adjust the coordination configuration and electronic properties of SACs. This concept summarizes the latest advances in the experimental and computational efforts aimed at tuning the axial coordination of SACs. Series of atoms, functional groups or even macrocycles are oriented into the atomic metal center, and how this affects the electrocatalytic performance is also reviewed. Finally, this concept presents perspectives for the further precise design, preparation and in-situ detection of axially coordinated SACs.  相似文献   

17.
单原子催化剂具有独特的结构位点,能最大化利用贵金属原子,在一系列化学转化反应中具有优异的活性和选择性.但单原子的稳定性是单原子催化剂应用的一个挑战,特别是还原气氛下单原子的稳定性,这极大地限制了单原子催化剂在加氢、脱氢和氢解反应中的应用.理解还原气氛下单原子的稳定机制和单原子催化剂活化氢气的反应机理对于扩大单原子催化剂的应用非常重要.Pt/WOx(2Pd>Au.氢气能在Pd和WOx界面非均相解离,而Au/WOx不能活化、解离氢气.我们进一步采用实验表征验证了DFT理论计算的结果.实验合成了WOx负载的Pt、Pd、Au三种催化剂,X射线衍射(XRD)和透射电子显微镜(TEM)结果表明,Pt能在WOx表面原子级分散和稳定,而Pd在WOx表面形成较小的纳米颗粒,Au形成较大的纳米颗粒.采用氢气化学吸附研究了三种催化剂对氢气的活化能力,结果表明三种催化剂的氢气活化能力顺序为Pt/WOx(137μmol/g-Pt)>Pd/WOx(43μmol/g-Pd)>>Au/WOx(4μmol/g-Au).将三种催化剂用于甘油选择性氢解制备1,3-丙二醇的反应中,只有Pt/WOx催化剂对甘油氢解具有优异的活性和选择性.从而实验证实了氢气气氛下原位产生的Bronsted酸具有关键作用和Pt1/WOx催化剂具有双功能催化性质.我们的研究不仅解释了还原气氛下金属单原子在氧化物表面的稳定机理,而且对单原子催化剂活化解离氢气提供了新的认识.  相似文献   

18.
王尧  黄寻  魏子栋 《催化学报》2021,42(8):1269-1286
氢能因其能量密度高、清洁无污染等特点,作为替代化石燃料的能源载体得到了广泛的研究.如何清洁高效地制备氢气受到了大量研究者的关注.当前,以化石能源的热反应所得副产氢气是主要来源.然而,采用该类方法不仅不能摆脱化石能源的使用以及温室气体的排放,还会造成生产氢气的纯度不高,碳氧化物杂质浓度过高的问题,严重影响氢气的后续使用.采用可再生能源(太阳能、风能等)所产富余电,进行电解水制氢,产生的氢气不含碳氧化合物杂质,纯度很高,可以真正实现碳的零排放,被认为是未来氢气来源的重要方式.目前,电解水制氢在制氢市场的所占份额较小,而造成这样局面的主要因素是该过程中的高能耗问题.为了降低能耗,开发高效催化剂加速两个电极上的电解反应的动力学尤为重要.近年,金属单原子催化剂(SACs)因其独特的结构,在很多研究中被用作电解水催化剂,进而开发出大量高性能的金属单原子电解水催化剂.本文综述了近年SACs在电解水催化方面的应用.首先,针对电解水反应本身,总结了阴阳极两侧的电极反应机制以及影响电极催化性能的关键吸附中间物种;然后,根据载体的不同,即合金、碳以及其它化合物将SACs分为三类,总结了相关电解水催化研究现状,并且针对不同类型SACs目前的发展情况,提出了它们各自存在的问题.其次,进一步总结了影响SACs电解水催化活性的因素,提出了四种决定SACs催化性能的影响因子,分别为金属原子的固有元素性质、配位环境、几何结构和负载量;同时讨论了这四类影响因素对SACs催化活性的影响机制,总结了调控各类影响因素的方法,为SACs的设计提出了一些建议.最后,展望了SACs在电解水催化中的应用,探讨了SACs在催化剂设计及催化机制研究方面的问题,提出了SACs在电解水催化中的未来发展方向.  相似文献   

19.
单原子催化的最新进展   总被引:1,自引:0,他引:1  
单原子催化剂由于其自身兼具均相催化剂的"孤立活性位点"和多相催化剂易于循环使用的特点,近年来受到了广泛关注.本综述概括了2015至2016年单原子催化领域的重要进展,重点介绍了新的催化剂制备方法、单原子金催化剂在CO氧化中的进展、单原子钯/铂催化的选择性加氢反应以及铂或非贵金属单原子催化剂在电化学中的应用等.在催化剂的合成方面,用传统的湿化学方法制备的单原子催化剂通常金属负载量较低,使得催化剂的常规表征比较困难.最近发展的一系列新型合成方法例如原子层沉积法、高温蒸汽转移法、光介还原法以及热解法等制备M?N?C等非贵金属催化剂等,尽管有不同程度的局限性,但均可以成功制备高负载量的单原子催化剂.单原子催化剂的载体得到了拓展,除传统的金属氧化物外,金属有机框架材料和二维材料等均被用于单原子催化剂的制备.在单原子催化剂的应用方面,金由于较高的电负性和与氧的弱相互作用能力,因而与氧化物载体作用较弱,不易形成单原子催化剂.但近期报道了成功制备的单原子金催化剂,在CO氧化反应、乙醇脱氢和二烯加氢反应中都有不错的进展.本文还介绍了铂和钯单原子(合金)催化剂在加氢反应中的优异活性及选择性,表明了单原子催化剂在选择性上的优势.将一种金属掺杂到另一种金属基底中制备的单原子合金催化剂也因其特异的性能备受关注.此外,对于化工生产中典型的均相催化反应,如氢甲酰化,单原子催化剂在无外加膦配体的情况下表现出高活性的同时还能很好地控制化学选择性,甚至达到令人满意的区域选择性,从实验上证明了单原子催化剂有望作为沟通均相催化和多相催化的桥梁.单原子催化剂在电催化和光催化中也得到了快速发展.铂单原子催化剂因其高原子利用率和高稳定性,在析氢反应和氧还原反应中有着良好的应用前景.另一方面,非贵金属特别是Co单原子催化剂在光电催化中因其优异的活性和巨大潜力得到了较深入的研究.除了上述进展,单原子催化领域还有许多基本问题需要继续深入研究,对单原子催化剂更加全面透彻的认识将为设计发展新型催化体系,扩展单原子催化领域提供指导和借鉴.  相似文献   

20.
单原子催化:沟通均相催化与多相催化的桥梁(英文)   总被引:2,自引:0,他引:2  
催化在现代化学工业中占据着极为重要的地位.催化剂是催化过程的核心.均相催化剂由于具有均一、孤立的活性位点,往往具有高活性与高选择性;但是分离困难限制了其实际应用.多相催化剂由于金属原子利用效率低、活性组分不均匀,活性与选择性相对较低;但其稳定易分离的特点使得目前大多数工业催化过程都是多相催化过程.近年来,单原子催化逐渐成为催化领域新的研究热点与前沿,受到相关研究人员的广泛关注.作为一种多相催化剂,单原子催化剂具有稳定易分离的优势.此外,单原子催化剂具有类似均相催化剂的孤立活性位点,可能具有高活性与高选择.因此单原子催化的概念一经提出,便被认为有望成为架起多相催化与均相催化的桥梁;但几年来并未从实验上得到证实.2016年开始,逐渐有单原子催化剂在经典均相催化反应过程中的应用报道,为该观点提供了实验上的证据.本综述概述了2016至2017年单原子催化剂在典型均相催化反应中的成功应用,包括:1)氢甲酰化反应.以烯烃和合成气为原料合成精细化学品醛类化合物的氢甲酰化反应是目前化工生产中典型的均相催化反应之一.2016年,张涛课题组和曾杰课题组先后报道了Rh/ZnO和Rh/CoO单原子催化剂在该反应中的成功应用.催化剂都表现出优异的催化性能,活性与经典均相Wilkinson’s催化剂相当;2)氢硅加成反应.作为合成有机硅产品的重要反应之一,工业上硅氢加成反应主要由Pt基均相催化剂催化.2016年Beller课题组首次报道了将Pt/Al_2O_3单原子催化剂用于烯烃硅氢加成反应中.该催化剂除表现出良好的催化活性和区域选择性外,还具有较高的稳定性和底物普适性;3)C–H键选择性氧化.烷烃部分氧化反应在学术研究和工业应用方面都有重要意义.刘文刚等将M-N-C单原子催化剂(其中M为Fe,Co等金属)成功应用于C–H键的活化反应中,并对催化剂的结构进行了深入剖析.以上实例表明通过调控金属与载体组合、设计开发合适的单原子催化剂,可以达到结合均相催化高活性、高选择性与多相催化稳定易分离的目的,为均相催化多相化提供了一条新途径,也证明单原子催化可望成为沟通均相催化与多相催化的桥梁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号