首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《中国化学快报》2020,31(7):1817-1821
Baicalin, extracted from traditional Chinese medicine Scutellaria baicalensis Georg, possesses multiple pharmacological activities and has great potential for chronic skin wound repair. However, the poor solubility and lack of suitable vehicles greatly limit its further application. Herein, we proposed a convenient and robust strategy, employing PBS solution as solvent, to enhance the solubility of baicalin. Furthermore, we constructed injectable baicalin/F127 hydrogels to study their application in skin wound treatment. The composition and temperature sensitivity of baicalin/Pluronic® F-127 hydrogels were confirmed by FTIR and rheological testing, respectively. In vitro release measurement indicated that the first order model was best fitted with the release profile of baicalin from hydrogel matrix. Besides, MTT assay, AO/EO staining assay as well as hemolytic activity test revealed the excellent cytocompatibility of baicalin/F127 hydrogels. Antioxidant activity assay demonstrated the cytoprotective activity of baicalin/F127 hydrogels against reactive oxygen species (ROS). Furthermore, the in vivo experiments exhibited the ability of baicalin/F127 hydrogel to accelerate wound healing. In conclusion, this novel injectable baicalin/F127 hydrogel should have bright application for chronic wound treatment.  相似文献   

2.
《中国化学快报》2022,33(12):5030-5034
Diabetic wounds lead to a decrease in quality of life and an increase in mortality. Current treatment strategies include preventing bacterial adhesion while improving microcirculation. As a new type of wound dressing that imitates natural skin, hydrogel has gradually emerged with its excellent properties. However, existing hydrogels rarely achieve satisfactory results in promoting wound repair and antibacterial simultaneously. In this case, we prepared methacrylic anhydride chemically modified hyaluronic acid as a hydrogel matrix, added polyhexamethylene biguanide as an antibacterial component, and loaded sodium alginate/salidroside composite microspheres which could sustainably release salidroside and thus promote angiogenesis. Hybrid hydrogel (HAMA/PHMB-Ms) was synthesized via photocrosslinking, and its chemical structure, particle size distribution and microstructure were characterized. The satisfactory antibacterial properties of the HAMA/PHMB(15%)-Ms hydrogel were studied in vitro, and its antibacterial rates against E. coli and S. aureus were 97.85% and 98.56%, respectively. In addition, after demonstrating its good biocompatibility, we verified that the HAMA/PHMB-Ms hydrogel has increased granulation tissue formation, more collagen deposition, more subcutaneous capillary formation, and better wound healing than blank control, HAMA and HAMA/PHMB hydrogel on the back wound model of diabetic mice. The results confirmed that HAMA/PHMB-Ms hydrogel was a promising material for the treatment of the diabetic wounds.  相似文献   

3.
《中国化学快报》2023,34(8):108125
As a representative of chronic wounds, the long-term high levels of oxidative stress and blood sugar in chronic diabetic wounds lead to serious complications, making them the biggest challenge in the research on wound healing. Many edible natural biomaterials rich in terpenes, phenols, and flavonoids can act as efficient antioxidants. In this study, okra extract was selected as the main component of a wound dressing. The okra extracts obtained via different methods comprehensively maintained the bioactivity of multiple molecules. The robust antioxidant properties of okra significantly reduced intracellular reactive oxygen species production, thereby accelerating the wound healing process. The results showed that okra extracts and their hydrogel dressings increased cell migration, angiogenesis, and re-epithelization of the chronic wound area, considerably promoting wound remodeling in diabetic rats. Therefore, okra-based hydrogels are promising candidates for skin regeneration and wider tissue engineering applications.  相似文献   

4.
Effective management of full-thickness wounds faces significant challenges due to poor angiogenesis and impaired healing. Biomimetic tissue-engineered scaffolds with angiogenic properties can, however, enhance the regeneration capacity of the damaged skin. Here, we developed a hybrid double-layer nanofibrous scaffold, comprised of egg white (EW) and polyvinyl alcohol (PVA), loaded with niosomal Deferoxamine (NDFO) for enhanced angiogenesis and wound healing features. The hybrid scaffold showed enhanced mechanical properties with comparable modulus and shape-recovery behavior of the human skin. Thanks to the porous morphology and uniform distribution of NDFO within the nanofibers, in vitro drug release studies indicated controlled and sustained release of DFO for up to 9 days. The constructs also promoted a significant increase in vascular sprouting area in vitro and enhanced vascular branches ex vivo. In vivo, implantation of the hybrid scaffold in full-thickness wounds in rats revealed early angiogenic response, a higher number of neo-formed vessels, a faster healing rate and complete epithelialization as early as day 10, compared to the control groups. Thus, the presented biomimetic hybrid scaffold with DFO control release features holds great promise in accelerated full-thickness wound healing and soft tissue regeneration.  相似文献   

5.
Surgical procedures are susceptible to the cause of infections, which could induce delayed wound healing, oxidative stress and tissue ischemia. Multifunctional wound dressings (e.g., hydrogels) without the induction of antibiotics is promising for the elimination of surgical site infections and the associated complications. Herein, we report a reductionism approach for the fabrication of bioactive hydrogels to recapitulate antibacterial functions as well as antioxidant, pro-angiogenic and hemostatic properties in surgical infection treatments. The hydrogels composed of naturally derived Cirsium setosum extracts (CE, a traditional medicinal herb) and carboxymethyl chitosan (CS) show their capacity for surgical anti-infections on three different models (i.e., infectious random skin flap model, infectious skin defect model and infectious femur fracture model). Due to the innate bioactivities of CE and CS, CECS hydrogels can also reduce the bleeding loss (85% reduction) on a hemorrhaging liver model and improve the vascularization for skin flap regeneration. Overall, bioactive CECS hydrogels integrated with the ease and scalability of assembly process and biological activities without the addition of antibiotics is promising to act as multifunctional wound dressings for surgical anti-infections.  相似文献   

6.
《中国化学快报》2023,34(10):108262
To achieve smart and personalized medicine, the development of hydrogel dressings with sensing properties and biotherapeutic properties that can act as a sensor to monitor of human health in real-time while speeding up wound healing face great challenge. In the present study, a biocompatible dual-network composite hydrogel (DNCGel) sensor was obtained via a simple process. The dual network hydrogel is constructed by the interpenetration of a flexible network formed of poly(vinyl alcohol) (PVA) physical cross-linked by repeated freeze-thawing and a rigid network of iron-chelated xanthan gum (XG) impregnated with Fe3+ interpenetration. The pure PVA/XG hydrogels were chelated with ferric ions by immersion to improve the gel strength (compressive modulus and tensile modulus can reach up to 0.62 MPa and 0.079 MPa, respectively), conductivity (conductivity values ranging from 9 × 10−4 S/cm to 1 × 10−3 S/cm) and bacterial inhibition properties (up to 98.56%). Subsequently, the effects of the ratio of PVA and XG and the immersion time of Fe3+ on the hydrogels were investigated, and DNGel3 was given the most priority on a comprehensive consideration. It was demonstrated that the DNCGel exhibit good biocompatibility in vitro, effectively facilitate wound healing in vivo (up to 97.8% healing rate) under electrical stimulation, and monitors human movement in real time. This work provides a novel avenue to explore multifunctional intelligent hydrogels that hold great promise in biomedical fields such as smart wound dressings and flexible wearable sensors.  相似文献   

7.
Cell-based therapies for wound repair are limited by inefficient delivery systems that fail to protect cells from the acute inflammatory environment. Here, a biomimetic hydrogel system is described that is based on the polymer pullulan, a carbohydrate glucan known to exhibit potent antioxidant capabilities. It is shown that pullulan hydrogels are an effective cell delivery system and improve mesenchymal stem cell survival and engraftment in high-oxidative-stress environments. The results suggest that glucan hydrogel systems may prove beneficial for progenitor-cell-based approaches to skin regeneration.  相似文献   

8.
Hydrogel formulations (masks or patches, without tissue support) represent the new frontier for customizable skin beauty and health. The employment of these materials is becoming popular in wound dressing, to speed up the healing process while protecting the affected area, as well as to provide a moisturizing reservoir, control the inflammatory process and the onset of bacterial development. Most of these hydrogels are acrylic-based at present, not biodegradable and potentially toxic, due to acrylic monomers residues. In this work, we selected a new class of cellulose-derived and biodegradable hydrogel films to incorporate and convey an active compound for dermatological issues. Films were obtained from a combination of different polysaccharides and clays, and berberine hydrochloride, a polyphenolic molecule showing anti-inflammatory, immunomodulatory, antibacterial and antioxidant properties, was chosen and then embedded in the hydrogel films. These innovative hydrogel-based systems were characterized in terms of water uptake profile, in vitro cytocompatibility and skin permeation kinetics by Franz diffusion cell. Berberine permeation fitted well to Korsmeyer–Peppas kinetic model and achieved a release higher than 100 µg/cm2 within 24 h. The latter study, exploiting a reliable skin model membrane, together with the biological assessment, gained insights into the most promising formulation for future investigations.  相似文献   

9.
Accelerating the coagulation process and preventing wound infection are major challenges in the wound care process. Therefore, new multifunctional wound dressings with procoagulant, antibacterial, and antioxidant properties have enormous potential for clinical application. In this work, biodegradable hydrogels containing herbal extracts are prepared for wound dressings. First, the active ingredients are extracted from Amaranthus spinosus (A. spinosus) and Rubia cordifolia (R. cordifolia) and added to the hydrogels prepared from microcrystalline cellulose (MCC), carrageenan, and sodium alginate. Then the composite hydrogels are air-dried to obtain the wound dressings. The wound dressings prepared in this work have good biocompatibility and moisture retention. The mechanical properties of the wound dressings are further improved with the addition of MCC. Besides, the wound dressings have excellent procoagulant, antibacterial, and antioxidant properties due to the presence of R. cordifolia extract. Overall, the most effective group of wound dressings with different ingredient formulations reduces clotting time by 75% and largely inhibits bacterial growth. The wound dressings perform well in the animal wound models to promote wound healing. These results indicate that the hydrogel wound dressings prepared in this work have great potential for medical applications.  相似文献   

10.
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.  相似文献   

11.
《中国化学快报》2023,34(7):107965
Although bone morphogenetic protein (BMP) and WNT signaling play pivotal roles in bone development, homeostasis, and regeneration, the applications of proteins to stimulate corresponding signaling pathways showed limited outcomes in the repair and regeneration of bone defects that might be attributed to the reciprocal interventions of these pathways. In order to satisfy the combinational and sequential activation of BMP and WNT pathways, inspired by the heterogeneous hydrogel-liked structures of Brasenia, heterogeneous alginate/chitosan hydrogels were fabricated and spatially loaded with FK506 and BIO to achieve sustained and sequential release of the activators. Alkaline phosphatase staining, alizarin red staining and qRT-PCR results suggested that FK506 and BIO enhanced osteoblastic differentiation in vitro when used separately. Besides, by mixing and matching the activators and the hydrogel layers, a superior releasing mode that a combination of early FK506 release and following BIO release was identified via both in vitro and in vivo explorations for most efficient bone regeneration. These results suggested that drug-loaded heterogeneous hydrogels possess great potentials in treating bone loss defects for future clinical practice.  相似文献   

12.
Bio sustainable hydrogels including tunable morphological and/or chemical cues currently offer a valid strategy of designing innovative systems to enhance healing/regeneration processes of damaged tissue areas. In this work, TEMPO-oxidized cellulose nanofibrils (T-CNFs) were embedded in alginate (Alg) and polyvinyl alcohol (PVA) solution to form a stable mineralized hydrogel. A calcium chloride reaction was optimized to trigger a crosslinking reaction of polymer chains and mutually promote in situ mineralization of calcium phosphates. FTIR, XRD, SEM/EDAX, and TEM were assessed to investigate the morphological, chemical, and physical properties of different mineralized hybrid hydrogels, confirming differences in the deposited crystalline nanostructures, i.e., dicalcium phosphate dehydrate (DCPDH) and hydroxyapatite, respectively, as a function of applied pH conditions (i.e., pH 4 or 8). Moreover, in vitro tests, in the presence of HFB-4 and HSF skin cells, confirmed a low cytotoxicity of the mineralized hybrid hydrogels, and also highlighted a significant increase in cell viability via MTT tests, preferentially, for the low concentration, crosslinked Alg/PVA/calcium phosphate hybrid materials (<1 mg/mL) in the presence of hydroxyapatite. These preliminary results suggest a promising use of mineralized hybrid hydrogels based on Alg/PVA/T-CNFs for bone and wound healing applications.  相似文献   

13.
A type of novel hybrid hydrogels from sodium humate (SH), polyacrylamide (PAM), and hydrophilic Laponite clay were prepared using potassium persulfate (KPS) as the initiator and N,N′-methylenebisacrylamide (MBA) as the cross-linker. The structures of the hydrogels were characterized by field emission scanning electron microscope and FTIR. Their swelling properties, swelling mechanism and rheological properties were also investigated. Experiments show that the composite is heterogeneous in the PAM/SH hydrogel system, while the clay collaborates with SH and improves the network structure of PAM/SH/clay hydrogel. High water-absorbing capability is shown for both hydrogel systems. Han plot proves that clay and SH are compatible with PAM for PAM/SH/clay hydrogels.  相似文献   

14.
A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.  相似文献   

15.
《Mendeleev Communications》2023,33(4):556-558
It has been found that the encapsulation of high molecular weight hyaluronic acid in a biologically relevant silica hydrogel matrix provides its accelerated penetration into the skin compared to free acid. The developed hybrid hydrogels, in which high molecular weight hyaluronic acid retains its pronounced anti-inflammatory properties and strong hydrating effect, can become the basis for new, more effective soft formlations for the treatment of inflammatory skin diseases, as well as for products used in the beauty industry. It has been shown that the penetration of hyaluronic acid from the hybrid hydrogels depends on the conditions of their synthesis, the average molecular weight and the loading of the acid.  相似文献   

16.
Hydrogels have been employed in regenerative treatments for decades because of their biocompatibility and structural similarity to the native extracellular matrix. Injectable hydrogels with interconnected porosity and specific internal structures are momentous for tissue engineering. Here, we develop a group of injectable hydrogels comprised of oxidized alginate (OA)/gelatin (GEL) strengthened by modifying the amount of Zn2SiO4 nanoparticles. The physicochemical characteristics of OA/GEL/Zn2SiO4 hydrogels were studied by mechanical strength, swelling ratio, and morphology. The outcomes revealed that the mechanical characteristics of hydrogels containing a higher amount of Zn2SiO4 (0.12 wt%) improved more than five times than the hydrogels fabricated without Zn2SiO4. The in vitro degradation outcomes manifested the degradation of the hydrogel comprising 0.12 wt% Zn2SiO4 NPs was slower than one without NPs, and remaining masses of hydrogels depend on different contents of Zn2SiO4 NPs. The hydrogel containing Zn2SiO4 NPs exhibited less cytotoxicity and good cell attachment than the hydrogels prepared without the nanoparticles. The cell viability and attachment show that the nanocomposite hydrogels are biocompatible (>96%) with great cell adhesion to osteosarcoma cell line MG63 depending on the presence of Zn2SiO4. The superior physical, chemical as well as mechanical characteristics of the hydrogels containing Zn2SiO4 NPs along with their cytocompatibility suggest that they can introduce as good candidates as scaffolds in tissue engineering.  相似文献   

17.
Smart peptide hydrogels are of great interest for their great potential applications. Here, we report a facile approach to prepare a class of enzyme-responsive hydrogels in a scalable manner. These hydrogels self-assemble from a family of nonionic peptide amphiphiles(PAs) synthesized by sequential ring-opening polymerization(ROP) of γ-benzyl-L-glutamate N-carboxyanhydride(BLG-NCA) and L-tyrosine N-carboxyanhydride(Tyr-NCA), followed by subsequent aminolysis. These PA samples can readily form a clear hydrogel with a critical gelation concentration as low as 0.5 wt%. The incorporation of tyrosine residues offers hydrophobicity, hydrogen-bonding interaction and enzyme-responsive properties. The hydrogel-to-nanogel transition is observed under physiological conditions in the presence of horseradish peroxidase(HRP) and hydrogen peroxide(H2 O2). The obtained PA hydrogels are ideal candidates for the new generation of smart scaffolds.  相似文献   

18.
肖春生 《高分子科学》2013,31(12):1697-1705
A series of biodegradable hydrogels based on dextran and poly(L-glutamic acid) were fabricated for effective vancomycin loading and release. The preparation of hydrogels was simply achieved by photo cross-linking of methacrylated dextran and poly(L-glutamic acid)-g-hydroxyethyl methacrylate (PGH) in the presence of photoinitiator 12959. The structures of hydrogels were characterized by FTIR and SEM. The swelling and enzymatic degradation behaviors of hydrogels were examined to be dependent on the poly(L-glutamic acid) content in the hydrogels. The higher content of poly(L-glutamic acid) in the gel, the higher swelling ratio and quicker degradation were observed. More interestingly, the hydrogel with higher PGH ratio showed higher vancomycin (VCM) loading content, which might be due to the electrostatic interaction between carboxylate groups in hydrogel and ammonium group of VCM. In vitro drug release from the VCM-loaded hydrogels in aqueous solution exhibited sustained release of VCM up to 72 h, while the in vitro antibacterial test based on the VCM-loaded hydrogel showed an efficient Methicillin-Resistant S. aureus (MRSA) inhibition extending out to 7 days. These results demonstrated that the biodegradable hydrogels which formed by in situ photo-cross linking would be promising as scaffolds or coatings for local antibacterial drug release in tissue engineering.  相似文献   

19.
以N-异丙基丙烯酰胺(NIPAM)和八乙烯基笼形低聚倍半硅氧烷(OVPOSS)为单体,通过溶液自由基共聚合成了一系列P(OVPOSS-co-NIPAM)有机-无机杂化水凝胶.采用傅立叶红外光谱(FTIR)、扫描电镜(SEM)、X-射线衍射(XRD)、示差扫描量热仪(DSC)、热重分析仪(TGA)和动态粘弹谱仪(DMA)对其结构与性能进行了研究.结果表明可以通过控制投料比来调节P(OVPOSS-co-NIPAM)杂化水凝胶中POSS的实际含量;P(OVPOSS-co-NIPAM)杂化水凝胶的微观形貌为孔洞结构,随POSS含量的增加,孔径逐渐减小;所合成的P(OVPOSS-co-NIPAM)杂化水凝胶均具有温敏性,随着POSS含量的增加,其最低临界溶解温度(LCST)由33.0℃降低至30.0℃,均低于常规水凝胶(33.7℃);POSS的引入使PNIPAM水凝胶的玻璃化转变温度(Tg)由142℃升至148℃,并改善了其热稳定性和力学强度.  相似文献   

20.
In this study, a biodegradable in situ gel-forming controlled drug delivery system based on a thermosensitive methoxy polyethylene glycol-co-poly (lactic acid-co-aromatic anhydride) (mPEG-PLCPPA) hydrogel was studied. The hydrogels were formed by micelle aggregation with rising temperature. The hydrogels underwent a temperature-dependent sol–gel–sol transition, which was a flowing sol at ambient temperature and a non-flowing gel at the physiological body temperature. The residual weight and pH value changes after degradation and the viscosity properties of the hydrogel were investigated. The in vitro release behavior of vancomycin from the mPEG-PLCPPA hydrogels at different concentrations was also investigated. The results showed that the mPEG-PLCPPA amphiphilic copolymer could self-assemble to form micelles at low concentrations, and that the particle sizes gradually increased with increasing temperature. The hydrogel maintained a stable degradation rate and provided a moderate pH microenvironment after degradation for 30 days. Vancomycin sustained a stable release profile from the hydrogel over a 10-day period. Furthermore, good biocompatibility was proven by MTT assay and live and dead test. Therefore, the mPEG-PLCPPA hydrogel shows promise as an injectable local antibiotic delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号