首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report here a method for the identification of free N-terminal peptide of in gel digested isolated proteins. It is based in the difference between the isotopic ion distribution of N-terminal peptide and internal peptides. After guanidination of lysine residues, the primary amino groups of the gel-entrapped protein are blocked with an equimolar mixture of normal and deuterated acetic anhydride. Upon MS analysis internal peptides display a normal isotopic ion distribution while the N-terminal peptide shows a complex isotopic ion distribution.  相似文献   

2.
Strategies are reported that combine in one step a predictable chemical-based protein digestion with mass spectrometry. Lysine residue amino groups in peptides and proteins are modified by reaction with a peroxycarbonate derived from p-nitrophenol, and tert-butyl hydroperoxide. The peroxycarbonate reacts with lysine residues in peptides and proteins, and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID). Observed fragmentation of the peptides involves apparent free radical processes including Hofmann-L?ffler-type rearrangements that lead to peptide chain fragmentation. Strategies for directed cleavage of peptides by free radical promoted processes are feasible, and such strategies may well simplify schemes for protein analysis.  相似文献   

3.
Considering the tremendous complexity and the wide dynamic range of protein samples from biological origin and their proteolytic peptide mixtures, proteomics largely requires simplification strategies. One common approach to reduce sample complexity is to target a particular amino acid in proteins or peptides, such as cysteine (Cys), with chemical tags in order to reduce the analysis to a subset of the whole proteome. The present work describes the synthesis and the use of two new cysteinyl tags, so‐called cysteine‐reactive covalent capture tags (C3T), for the isolation of Cys‐containing peptides. These bifunctional molecules were specifically designed to react with cysteines through iodoacetyl and acryloyl moieties and permit efficient selection of the tagged peptides. To do so, a thioproline was chosen as the isolating group to form, after a deprotection/activation step, a thiazolidine with an aldehyde resin by the covalent capture (CC) method. The applicability of the enrichment strategy was demonstrated on small synthetic peptides as well as on peptides derived from digested proteins. Mass spectrometric (MS) analysis and tandem mass spectrometric (MS/MS) sequencing confirmed the efficient and straightforward selection of the cysteine‐containing peptides. The combination of C3T and CC methods provides an effective alternative to reduce sample complexity and access low abundance proteins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
We report here a method for the identification of free or blocked N-terminal peptide of in-gel digested isolated proteins. The primary amino groups of the gel-entrapped protein are blocked with normal acetic or succinic anhydride, and the protein is digested with a high-specificity protease. The generated peptides are treated with an equimolar mixture of normal and deuterated acetic anhydride. Upon mass spectrometric analysis internal peptides display a complex isotopic ion distribution while the N-terminal peptide shows a normal isotopic ion distribution. The procedure was applied to the identification of the N-terminus of individual and protein mixtures isolated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

5.
低浓度甲醛对多肽和蛋白化学修饰的质谱研究   总被引:1,自引:0,他引:1  
采用基质辅助激光解析电离飞行时间质谱( MALDI-TOF MS)和纳升电喷雾四极杆飞行时间串联质谱( Nano-ESI -QTOF MS)技术,以标准肽段和流感病毒基质蛋白酶切肽段为模型,研究了甲醛对蛋白质和多肽主链的修饰作用。采用与实际病毒灭活过程一致的实验条件(4℃,0.025%(V/V)福尔马林(37%(w/w)甲醛溶液)处理72 h),进行甲醛与多肽的化学反应。结果表明,在实验条件下,甲醛能与标准肽段N端的氨基反应生成羟甲基加合物,再发生缩合反应生成亚胺,形成+12 Da的产物。此外,甲醛还能与标准肽段中的精氨酸、赖氨酸的侧链发生反应,生成+12 Da的反应产物。对流感病毒基质蛋白的酶切肽段与甲醛的反应的质谱分析结果显示,多数的肽段都生成了+24 Da的产物,质量的增加来源于肽段N端氨基(+12 Da)和C端精氨酸或赖氨酸的侧链(+12 Da)的贡献。此外,还观察到有一个漏切位点的肽段生成了+36 Da的产物。本研究结果表明,在实验条件下,低浓度甲醛主要与肽段和蛋白的N 端氨基,以及精氨酸和赖氨酸侧链发生反应。本研究为分析低浓度甲醛与蛋白质的反应产物提供了有效的质谱分析方法和解谱依据。  相似文献   

6.
The number of donor atoms available on peptides that can competitively coordinate to metal centers renders the site-selective generation of advanced metal-peptide conjugates in high purity a challenging venture. Herein, we present a transmetalation-based synthetic approach on solid support in which an imidazolium pro-ligand can be used to selectively anchor a range of transition metal half-sandwich complexes onto peptides in the presence of multiple coordinative motifs. Amenable to solid support, a range of N-terminus and/or lysine conjugated metal-peptide conjugates were obtained in high purity after cleavage from the resin. The metalated peptides were evaluated for their anticancer properties against human cancer cell lines. While no cytotoxic activity was observed, this platform has the potential to i) provide a pathway to site-selective peptide labelling, ii) be explored as a biorthogonal handle and/or iii) generate a new strategy for ligand design in transition metal catalysts.  相似文献   

7.
The development of site-selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilitate the development of polypeptide conjugates to advance therapeutics, diagnostics, and fundamental science. We report a versatile and selective method to functionalize peptides and proteins through free-radical-mediated dechalcogenation. By exploiting phosphine-induced homolysis of the C−Se and C−S bonds of selenocysteine and cysteine, respectively, we demonstrate the site-selective installation of groups appended to a persistent radical trap. The reaction is rapid, operationally simple, and chemoselective. The resulting aminooxy linker is stable under a variety of conditions and selectively cleavable in the presence of a low-oxidation-state transition metal. We have explored the full scope of this reaction using complex peptide systems and a recombinantly expressed protein.  相似文献   

8.
Six amino acids with pIs that ranged from 3.2 to 9.7 were used as ampholytes to establish a pH gradient in capillary isoelectric focusing. This amino acid-based capillary isoelectric focusing (cIEF) was coupled with ESI-MS/MS using an electrokinetically pumped sheath-flow interface for peptide analysis. Amino acid-based isoelectric focusing generates a two-order of magnitude lower background signal than commercial ampholytes in the important m/z range of 300–1800. Good focusing was achieved for insulin receptor, which produced ∼10 s peak width. For 0.1 mg mL−1 bovine serum albumin (BSA) digests, 24 ± 1 peptides (sequence coverage 47 ± 4%) were identified in triplicate analysis. As expected, the BSA peptides were separated according to their pI. The concentration detection limit for the BSA digests is 7 nM and the mass detection limit is 7 fmole. A solution of six bovine protein tryptic digests spanning 5 orders of magnitude in concentration was analyzed by amino acid based cIEF-ESI-MS/MS. Five proteins with a concentration range spanning 4 orders of magnitude were identified in triplicate runs. Using amino acid based cIEF-ESI-MS/MS, 112 protein groups and 303 unique peptides were identified in triplicate runs of a RAW 264.7 cell homogenate protein digest. In comparison with ampholyte based cIEF-ESI-MS/MS, amino acid based cIEF-ESI-MS/MS produces higher resolution of five acidic peptides, much cleaner mass spectra, and higher protein spectral counts.  相似文献   

9.
Covalent modification of peptides and proteins with compounds containing stable isotopes (isotope tagging) has become an essential tool to detect dynamic changes in the proteome following external or internal influence; however, using terminal amino groups for global isotope labelling of tryptic peptides is challenged by the similar reactivity of the amino groups of lysine residues. We describe a new quantitative method based on selective tagging of the terminal amino groups of tryptic peptides with pentafluorophenyl esters containing stable isotopes. The labelled peptides were resolved by two-dimensional nanoflow liquid chromatography on weak anion-exchange and reversed-phase columns and then identified and quantified by tandem mass spectrometry. The method was applied to compare the proteomes of plasma membranes from proliferating and differentiated human colorectal adenocarcinoma (Caco-2) cells and endosomes purified from the livers of rats stimulated with insulin and epidermal growth factor. The comparison of the results obtained by isotope tagging and biochemical assays demonstrate that global isotope tagging with pentafluorophenyl esters allows accurate quantification of complex protein samples.  相似文献   

10.
In a previous communication1 we reported on the synthesis of 3,3-dimethylcyclohexylideneacetaldehyde (5a), an important component of the sex pheromone complex of the male Boll Weevil. A key step in this synthesis involved the simultaneous removal of halogen and a double bond from an intermediate poly unsaturated aldehyde by selective reduction. As a part of our investigations on the Vilsmeier formylation of vinylcyclopropanes and dienes2, we have found an easy route to aldehyde 4a, and we now show that this aldehyde can serve as an excellent synthon for the preparation of 3,3-dimethylcyclohexylideneacetaldehyde (5a).  相似文献   

11.
Site-selective modification of proteins has been the object of intense studies over the past decades, especially in the therapeutic field. Prominent results have been obtained with recombinant proteins, for which site-specific conjugation is made possible by the incorporation of particular amino acid residues or peptide sequences. In parallel, methods for the site-selective and site-specific conjugation of native and natural proteins are starting to thrive, allowing the controlled functionalization of various types of amino acid residues. Pursuing the efforts in this field, we planned to develop a new type of site-selective method, aiming at the simultaneous conjugation of two amino acid residues. We reasoned that this should give higher chances of developing a site-selective strategy compared to the great majority of existing methods that solely target a single residue. We opted for the Ugi four-centre three-component reaction to implement this idea, with the aim of conjugating the side-chain amine and carboxylate groups of two neighbouring lysine and aspartate/glutamate. Herein, we show that this strategy can give access to valuable antibody conjugates bearing several different payloads; furthermore, the approach limits the potential conjugation sites to only six on the model antibody trastuzumab.  相似文献   

12.
In the present study, reactions of sodium nitrite with proteins/peptides were characterized with mass spectrometry. The reaction generates two major products: replacement of the amino group by a hydroxyl group and formation of an alkene derivative by loss of a NH3 group at the N-terminus and the side chain of lysine residues of proteins/peptides. The reaction proceeds rapidly in weak acidic solution and at 37 degrees C in the presence of a millimolar concentration of nitrite, demonstrating that nitrite induces nitrosative deamination in proteins and peptides. The facile nitrite-induced modification of amino groups of protein/peptides changes the chemical nature of proteins and may have various applications in peptide synthesis, analytical chemistry, and protein engineering. It also provides information to enhance our understanding of functions of nitrite ions in biology and food preservation.  相似文献   

13.
Amino groups are common in both natural and synthetic compounds and offer a very attractive class of endogenous handles for bioconjugation. However, the ability to differentiate two types of amino groups and join them with high hetero-selectivity and efficiency in a complex setting remains elusive. Herein, we report a new method for bioconjugation via one-pot chemoselective clamping of two different amine nucleophiles using a simple ortho-phthalaldehyde (OPA) reagent. Various α-amino acids, aryl amines, and secondary amines can be crosslinked to the ϵ-amino side chain of lysine on peptides or proteins with high efficiency and hetero-selectivity. This method offers a simple and powerful means to crosslink small molecule drugs, imaging probes, peptides, proteins, carbohydrates, and even virus particles without any pre-functionalization.  相似文献   

14.
A general labelling method is presented which allows the determination of the number of guanidine groups (related to arginine and homoarginine in peptides and proteins) by means of mass spectrometry. It implies a guanidine-selective derivatization step with 2,3-butanedione and an arylboronic acid under aqueous, alkaline conditions (pH 8-10). The reaction mixture is then directly analysed by electrospray ionization mass spectrometry without further sample pretreatment. Other amino acids are not affected by this reaction although it is demonstrated that lysine side-chains may be unambiguously identified when they are converted to homoarginine prior to derivatization. Guanidine functionalities, as e.g. in the amino acid arginine, are easily identified by the characteristic mass shift between underivatized and derivatized analyte. The tagging procedure is straightforward and selective for guanidine groups. The influence of several experimental parameters, especially the pH of the solution and the choice of reagents, is examined and the method is applied to various arginine-containing peptides and to lysozyme as a representative protein. Possible applications of this technique and its limitations are discussed.  相似文献   

15.
To design a generic purification platform and to combine the advantages of fusion protein technology and matrix-assisted refolding, a peptide affinity medium was developed that binds inclusion body-derived Npro fusion proteins under chaotropic conditions. Proteins were expressed in Escherichia coli using an expression system comprising the autoprotease Npro from Pestivirus, or its engineered mutant called EDDIE, with C-terminally linked target proteins. Upon refolding, the autoprotease became active and cleaved off its fusion partner, forming an authentic N-terminus. Peptide ligands binding to the autoprotease at 4 M urea were screened from a combinatorial peptide library. A group of positive peptides were identified and further refined by mutational analysis. The best binders represent a common motif comprising positively charged and aromatic amino acids, which can be distributed in a random disposition. Mutational analysis showed that exchange of a single amino acid within the peptide ligand caused a total loss of binding activity. Functional affinity media comprising hexa- or octapeptides were synthesized using a 15-atom spacer with terminal sulfhydryl function and site-directed immobilization of peptides derivatized with iodoacetic anhydride. The peptide size was further reduced to dipeptides comprising only one positively charged and one aromatic amino acid. Based on this, affinity media were prepared by immobilization of a poly amino acid comprising lysine or arginine, and tryptophan, phenylalanine, or tyrosine, respectively, in certain ratios. Binding capacities were in the range of 7–15 mg protein mL−1 of medium, as could be shown for several EDDIE fusion proteins. An efficient protocol for autoproteolytic cleavage using an on-column refolding method was implemented.  相似文献   

16.
We describe a convenient and useful method for the identification and relative quantification of proteins using light and heavy reagents, 1-(6-methylnicotinoyloxy)succinimides (6-CH(3)-Nic-NHS and 6-CD(3)-Nic-NHS, respectively). This method is based on the chemical derivatization of amino groups of tryptic peptides with these reagents, i.e., the basic moiety of the reagents thus incorporated into both the N-terminal amino group and the epsilon-amino group of the lysine residue would improve the ionization efficiency of tryptic peptides. An increase in protein sequence coverage is achieved by derivatization with these reagents or by combination of mass values before and after derivatization. Since a combination of 6-CH(3)-Nic-NHS and d(3)-labeled reagent (6-CD(3)-Nic-NHS) generates a 3 Da mass difference per reaction site, the d(3)-labeled reagent shifts the mass values of d(0)-labeled peptides according to the number of reactive amino groups in the peptides. In the case of tryptic peptides, the mass values of C-terminal arginine and lysine peptides are shifted by 3 and 6 Da, respectively. Further, the 3 Da mass difference between 6-CH(3)-Nic-NHS and 6-CD(3)-Nic-NHS offers a means for the relative quantification of protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.  相似文献   

17.
In vitro incubations were performed to show that homocysteine thiolactone could generate covalent adducts with model peptides and proteins. MS and MS/MS data suggest that the thiolactone reacts with the side-chain amino group of lysine residues as well as with the N-terminal amino group or C-terminal carboxy group. For larger peptides and proteins, the contribution from the in-amino groups of lysine residues should be predominant. These data could help explain the detrimental effects of elevated levels of homocysteine and homocysteine thiolactone.  相似文献   

18.
A mild and effective method is described for 11C‐labeling of peptides selectively at the N‐terminal nitrogen or at internal lysine positions. The presented method relies on the use of specific biphosphine palladium–methyl complexes and their high reactivity towards amino‐carbonylation of amine groups in the presence [11C]carbon monoxide. The protocol facilitates the production of native N‐11C‐acetylated peptides, without any structural modifications and has been applied to a selection of bioactive peptides.  相似文献   

19.
In aqueous solution, many biochemical reaction pathways involve reaction of an aldehyde with an amine, which progresses through generally unstable, hydrated and dehydrated, Schiff base intermediates that often are unobservable by conventional NMR. There are 4 states in the relevant equilibrium: 1) gem‐diol, 2) aldehyde, 3) hemiaminal, and 4) Schiff base. For the reaction between protein amino groups and DOPAL, a highly toxic metabolite of dopamine, the 1H resonances of both the hemiaminal and the dehydrated Schiff base can be observed by CEST NMR, even when their populations fall below 0.1 %. CEST NMR reveals the quantitative exchange kinetics between reactants and Schiff base intermediates, explaining why the Schiff base NMR signals are rarely observed. The reactivity of DOPAL with Nα‐amino groups is greater than with lysine N?‐amines and, in the presence of O2, both types of Schiff base DOPAL–peptide intermediates rapidly react with free DOPAL to irreversibly form dicatechol pyrrole adducts.  相似文献   

20.
Emiliania huxleyi is a cosmopolitan coccolithophore that plays an essential role in global carbon and sulfur cycling, and contributes to marine cloud formation and climate regulation. Previously, the proteomic profile of Emiliania huxleyi was investigated using a three-dimensional separation strategy combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current study reuses the MS/MS spectra obtained, for the global discovery of post-translational modifications (PTMs) in this species without specific enrichment methods. Twenty-five different PTM types were examined using Trans-Proteomic Pipeline (Comet and PeptideProphet). Overall, 13,483 PTMs were identified in 7421 proteins. Methylation was the most frequent PTM with more than 2800 modified sites, and lysine was the most frequently modified amino acid with more than 4000 PTMs. The number of proteins identified increased by 22.5% to 18,780 after performing the PTM search. Compared to intact peptides, the intensities of some modified peptides were superior or equivalent. The intensities of some proteins increased dramatically after the PTM search. Gene ontology analysis revealed that protein persulfidation was related to photosynthesis in Emiliania huxleyi. Additionally, various membrane proteins were found to be phosphorylated. Thus, our global PTM discovery platform provides an overview of PTMs in the species and prompts further studies to uncover their biological functions. The combination of a three-dimensional separation method with global PTM search is a promising approach for the identification and discovery of PTMs in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号