首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以二氧化硅为模板,钛酸四丁酯(TBOT)为钛源,硝酸锌为锌源,采用溶胶凝胶法制备了锌离子掺杂的介孔二氧化钛空心微球。采用X射线衍射(XRD)、比表面积(BET)、透射电镜(TEM)、扫描电镜(SEM)和X射线光电子能谱(XPS)等技术对样品进行表征,以亚甲基蓝(MB)的光催化降解为目标反应评价其光催化活性。结果表明,去核之后的复合微球为空心微球,壁厚为20 nm左右。钛酸四丁酯溶液的滴加时间对微球的形貌影响较大,当滴加时间大于15 min时,可以得到结构清晰的空心微球。用氢氧化钠溶液去除二氧化硅核,反应90 min,二氧化硅可以被完全去除。X射线衍射表明,实验得到的掺杂锌离子的空心微球和没有掺杂锌离子的空心微球都是锐钛矿。当锌离子的摩尔分数为0.3%时,二氧化钛空心微球的晶粒尺寸最小,比表面积最大,催化亚甲基蓝降解的效率最高。  相似文献   

2.
以二氧化硅为模板,钛酸四丁酯(TBOT)为钛源,硝酸锌为锌源,采用溶胶凝胶法制备了锌离子掺杂的介孔二氧化钛空心微球。采用X射线衍射(XRD)、比表面积(BET)、透射电镜(TEM)、扫描电镜(SEM)和X射线光电子能谱(XPS)等技术对样品进行表征,以亚甲基蓝(MB)的光催化降解为目标反应评价其光催化活性。结果表明,去核之后的复合微球为空心微球,壁厚为20nm左右。钛酸四丁酯溶液的滴加时间对微球的形貌影响较大,当滴加时间大于15min时,可以得到结构清晰的空心微球。用氢氧化钠溶液去除二氧化硅核,反应90min,二氧化硅可以被完全去除。X射线衍射表明,实验得到的掺杂锌离子的空心微球和没有掺杂锌离子的空心微球都是锐钛矿。当锌离子的摩尔分数为0.3%时,二氧化钛空心微球的晶粒尺寸最小,比表面积最大,催化亚甲基蓝降解的效率最高。  相似文献   

3.
Heteroatom‐doped polymers or carbon nanospheres have attracted broad research interest. However, rational synthesis of these nanospheres with controllable properties is still a great challenge. Herein, we develop a template‐free approach to construct cross‐linked polyphosphazene nanospheres with tunable hollow structures. As comonomers, hexachlorocyclotriphosphazene provides N and P atoms, tannic acid can coordinate with metal ions, and the replaceable third comonomer can endow the materials with various properties. After carbonization, N/P‐doped mesoporous carbon nanospheres were obtained with small particle size (≈50 nm) and high surface area (411.60 m2 g?1). Structural characterization confirmed uniform dispersion of the single atom transition metal sites (i.e., Co‐N2P2) with N and P dual coordination. Electrochemical measurements and theoretical simulations revealed the oxygen reduction reaction performance. This work provides a solution for fabricating diverse heteroatom‐containing polymer nanospheres and their derived single metal atom doped carbon catalysts.  相似文献   

4.
Low‐cost, single‐step synthesis of hollow nanotubes of N‐doped carbon deposited on CoS is enabled by the simultaneous use of three functionalities of polyacrylonitrite (PAN) nanofibers: 1) a substrate for loading active materials, 2) a sacrificial template for creating hollow tubular structures, and 3) a precursor for in situ nitrogen doping. The N‐doped carbon in hollow tubes of CoS provides a high‐capacity anode of long cycle life for a rechargeable Li‐ion or Na‐ion battery cell that undergoes the conversion reaction 2 A++2 e?+CoS →Co+A2S with A=Li or Na.  相似文献   

5.
以双氰胺和氢氧化钾为原料制备了能带可控的钾离子掺杂石墨型氮化碳(g-C3N4)光催化剂,并与碱处理的g-C3N4及g-C3N4/KOH复合催化剂进行了对比。采用X射线衍射(XRD)光谱、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、N2吸附、电感耦合等离子体-原子发射光谱(ICP-AES)、荧光(PL)光谱、X 光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明,钾离子含量对氮化碳催化剂的价带及导带位置有显著影响。此外,钾离子的引入抑制了氮化碳晶粒的生长,提高了氮化碳的比表面积以及对可见光的吸收,降低了光生电子-空穴对的复合几率。以染料罗丹明B的降解为探针反应系统研究了钾离子掺杂对g-C3N4在可见光下催化性能的影响,研究了光催化反应机理。结果表明,钾离子掺杂后氮化碳的光催化性能显著提高。制备的钾离子掺杂氮化碳催化剂表现出良好的结构及催化稳定性。  相似文献   

6.
Porous α-Fe2O3 hollow microspheres were synthesized through a simple and efficient carbon sphere template method. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption. Structural characterization indicated that as-prepared α-Fe2O3 hollow microspheres had porous structure with around 200 nm in diameter and thin shell about 10 nm thick. The average pore size and Brunauer-Emmett-Teller specific surface area of α-Fe2O3 hollow microspheres were 6.5 nm and 111.6 m2/g, respectively. The gas sensing behavior investigation showed that as-synthesized α-Fe2O3 hollow microspheres exhibited very good gas sensing property to acetone vapor.  相似文献   

7.
掺氮TiO2可见光降解有机污染物的比较研究   总被引:1,自引:0,他引:1  
方艳芬  黄应平  刘立明  罗光富 《化学学报》2007,65(23):2693-2700
用溶胶-凝胶法制备了不同掺杂量的N/TiO2复合纳米粉末, 采用X射线衍射(XRD)、扫描透镜(TEM)、紫外-可见反射吸收光谱(UV-vis)对催化剂进行了初步表征. 通过X射线光电子能谱(XPS)、元素分析仪(EA)测定其含氮量. XPS分析结果显示TiO2晶格中的氧被氮原子取代, N/TiO2表面存在Ti3+离子; 紫外-可见反射吸收光谱测得不同掺杂量的N/TiO2的禁带宽度(Eg), 推测在TiO2价带上方生成了由N诱导产生的中间带, 当氮、钛摩尔比为0.0880时N/TiO2Eg最小, 为2.50 eV. 在可见光下, 以酸性桃红(SRB)和无色小分子对氯苯酚(4-CP)作为可见光活性实验的探针反应, 确定了最佳掺杂比为nN/nTi=0.0880. 结果表明, 最佳掺杂量下N/TiO2能显著降解SRB和4-CP, 通过测定ESR, IR, TOC, COD, 重点比较了TiO2在掺杂N前后在降解SRB和4-CP时的差异, 包括氧化物种、矿化率、最终产物等, 证明在可见光下, N/TiO2的降解机理为电子从独立的N 2p轨道激发到Ti 3d轨道, 产生羟基自由基等氧化物种, 达到降解有机物的目的.  相似文献   

8.
Metal‐free heteroatom‐doped carbocatalysts with a high surface area are desirable for catalytic reactions. In this study, we found an efficient strategy to prepare nitrogen, phosphorus, and sulfur co‐doped hollow carbon shells (denote as NPS‐HCS) with a surface area of 1020 m2 g−1. Using a poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) shell as carbon source and N, P, S‐doping source, and the ZIF‐67 core as structural template as well as extra N‐doping source, NPS‐HCS were obtained with a high surface area and superhydrophilicity. All these features render the prepared NPS‐HCS a superior metal‐free carbocatalyst for the selective oxidation of aromatic alkanes in aqueous solution. This study provides a reliable and facile route to prepare doped carbocatalysts with enhanced catalytic properties.  相似文献   

9.
Mesoporous anatase TiO2 microspheres were prepared via solvothermal method. Ammonium tungstate was used as the W source, and ammonia gas flowing in an ammonothermal reactor as the N source for codoping. TiO2:(W,N) mesoporous microspheres, which were prepared from solvothermal treatment at 160 °C for 16 h and thermal ammonolysis at 500 °C for 2 h after calcination, have high specific surface area of 106 m2 g−1. XPS results indicate the presence of NO, Ni and W6+ in the codoped mesoporous TiO2 microspheres. Monodoping with N shifts the absorption band edge of anatase TiO2 from ultraviolet region to visible region. Although codoping with W makes the visible light absorbance decrease a little, the photocatalytic degradation of a cationic dye rhodamine B (RhB) on mesoporous TiO2:(W,N) microspheres is increased to 1.7 times of that on mesoporous TiO2:N microspheres. This may due to decreasing recombination centers by W-doping charge compensation.  相似文献   

10.
Metal‐free heteroatom‐doped carbocatalysts with a high surface area are desirable for catalytic reactions. In this study, we found an efficient strategy to prepare nitrogen, phosphorus, and sulfur co‐doped hollow carbon shells (denote as NPS‐HCS) with a surface area of 1020 m2 g?1. Using a poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) shell as carbon source and N, P, S‐doping source, and the ZIF‐67 core as structural template as well as extra N‐doping source, NPS‐HCS were obtained with a high surface area and superhydrophilicity. All these features render the prepared NPS‐HCS a superior metal‐free carbocatalyst for the selective oxidation of aromatic alkanes in aqueous solution. This study provides a reliable and facile route to prepare doped carbocatalysts with enhanced catalytic properties.  相似文献   

11.
A novel N‐doped MoO 3 @SiC hollow nanosphere has been synthesized through two steps. Due to the first step, N‐doped MoO2@C nanosphere was synthesized using the hydrothermal method and in the second step, Si‐C bonds were formed through the low‐temperature magnesiothermic method and MoO 3 @SiC hollow nanosphere was produced. The prepared nanostructures were identified by various techniques such as IR, XRD, XPS, BET/BJH, SEM/EDS, and Raman spectroscopy. Results show that converting of C to SiC increase the surface area from 17 to 241 m2/g with remarkably decrease in pore diameter. Also, molybdenum is present in the form of MoO2 in carbon catalyst while during magnesiothermic process, it transfers to MoO3 form in the SiC catalyst. The synthesized products were employed as catalysts in oxidative desulfurization of model fuel. The results displayed that MoO 3 @SiC hollow nanostructure shows a superior catalytic activity (99.9%, 40 min) compared to C support (56%, 60 min). Furthermore, the recycling of MoO2@C catalyst shows a dramatic decrease even after the first run, while, SiC support exhibit higher stability during the stronger interaction between molybdenum catalyst and SiC support.  相似文献   

12.
CeO2 hollow microspheres have been fabricated through a simple thermal decomposition of precursor approach. The precursor with an average size of 10 μm was prepared in a reverse microemulsions containing Ce(NO3)3·6H2O and CO(NH2)2 at 160 °C. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electron microscopy (SEM). The possible formation mechanism of hollow spheres was discussed. In addition, the CeO2 hollow microspheres modified glassy carbon electrode exhibit excellent sensing performance towards methyl orange, which provide a new application of CeO2 hollow spheres. The catalytic activity of CeO2 hollow spheres on the thermal decomposition of ammonium perchlorate (AP) also was investigated by TGA. The catalytic performance of CeO2 hollow spheres is superior to that of commercial CeO2 powder.  相似文献   

13.
Porous copper oxide (CuO) hollow microspheres have been fabricated through a simple hydrothermal method using PS latex as templates. The as-obtained samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). The influences of the mole ratio of Ethylenediamine (C2H8N2) and copper acetate (Cu(Ac)2·H2O), hydrothermal temperature and time on the size and morphologies of the final products have been investigated. The possible formation mechanism of porous CuO hollow microspheres has been proposed and the specific surface area of the hollow microspheres with 81.71 m2/g is measured by BET method. The band gap value calculated from a UV–vis absorption spectrum of porous CuO hollow microspheres is 2.71 eV. The as-synthesized product exhibits high photocatalytic activity during the photodegradation of an organic dyestuff, rhodamine B (RhB), under UV-light illumination.  相似文献   

14.
采用涂覆法制备了CoAl_2O_4/蜂窝陶瓷催化剂。利用X射线衍射、N_2吸附-脱附和透射电镜等方法对所制备的催化剂进行了表征,并分析了其催化臭氧化降解对苯二酚的效能。结果表明,CoAl_2O_4/蜂窝陶瓷的晶相属于典型的尖晶石结构,具有较大的比表面积、孔容和孔径,分别达到77 m~2·g~(-1)、0.001 7 cm~3·g~(-1)和3.9 nm。CoAl_2O_4/蜂窝陶瓷催化臭氧化对苯二酚的去除率高达81.2%,COD去除率可达47.7%。在叔丁醇存在的条件下,对苯二酚的去除率显著下降,说明CoAl_2O_4/蜂窝陶瓷催化臭氧化遵循羟基自由基机理。  相似文献   

15.
Nitrogen‐doped hollow cobalt oxide nanofibers (Co3O4 NFs) with both glucose catalytic activity and pH sensitivity were fabricated through core‐sheath electrospinning technique, followed by calcination. The as‐developed nitrogen‐doped hollow Co3O4 NFs were thoroughly characterized using various techniques, and then employed to fabricate a dual electrochemical sensor for both pH sensing and glucose sensing. The pH sensitivity of the developed nitrogen‐doped hollow Co3O4 NFs demonstrated a Nernst constant of 12.9–15.9 mV/pH in the pH range of 3.0~9.0 and 6.8–10.7 mV/pH in the pH range of 9.0~13.0, respectively. The developed hollow cobalt oxides nanofibers sensor also possesses glucose sensitivity of 87.67 μA mM?1 cm?2, the limit of detection of 0.38 μM (S/N=3), and an acceptable selectivity against several common interferents in non‐enzymatic glucose determination. High accuracy for monitoring glucose in human serum sample was also demonstrated. These features indicate that the as‐synthesized nitrogen‐doped hollow cobalt oxides nanofibers hold great potential in the development of a unique dual sensor for both solid‐state pH sensing and superior non‐enzymatic glucose sensing.  相似文献   

16.
采用涂覆法制备了CoAl2O4/蜂窝陶瓷催化剂。利用X射线衍射、N2吸附-脱附和透射电镜等方法对所制备的催化剂进行了表征,并分析了其催化臭氧化降解对苯二酚的效能。结果表明,CoAl2O4/蜂窝陶瓷的晶相属于典型的尖晶石结构,具有较大的比表面积、孔容和孔径,分别达到77 m2·g-1、0.001 7 cm3·g-1和3.9 nm。CoAl2O4/蜂窝陶瓷催化臭氧化对苯二酚的去除率高达81.2%,COD去除率可达47.7%。在叔丁醇存在的条件下,对苯二酚的去除率显著下降,说明CoAl2O4/蜂窝陶瓷催化臭氧化遵循羟基自由基机理。  相似文献   

17.
This research investigated the efficiency of nanosized ZnO in the catalytic ozonation of 4-chloro-2-nitrophenol and determined the effect of pH on heterogeneous catalytic ozonation. Use of ozone with ZnO catalyst leads to conversion of 98.7% of 4-chloro-2-nitrophenol during 5 min. In addition, it was found that in ZnO catalytic ozonation, the degradation efficiency of 4-chloro-2-nitrophenol was higher at low pH conditions (pH 3.0) than high pH (pH 7–9). This result was not in accordance with ozonation alone, following which higher pH had positive effect on the degradation of 4-chloro-2-nitrophenol. During the catalytic ozonation of 4-chloro-2-nitrophenol, an increase of nitrate ions in water sample solution was observed. At pH = 3, the concentration of nitrate formed during nano-ZnO catalytic ozonation was 7.08 mg L−1 and the amount of total organic carbon was 54.9% after 30 min.  相似文献   

18.
The title compounds, trans‐bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)bis(ethanol‐κO)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans‐bis(1H‐benzimidazole‐κN3)bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen‐bonded supramolecular complexes. In (I), the CdII ion is six‐coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole‐2‐carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O—H...O and N—H...O hydrogen bonds results in two‐dimensional layers parallel to the ab plane. In (II), the six‐coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the CdII ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N—H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one‐dimensional chain parallel to the a axis. Moreover, these one‐dimensional chains are further linked via N—H...O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three‐dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co‐ligands occupy the axial sites in the coordination units.  相似文献   

19.
The practical implementation of lithium–sulfur batteries is obstructed by poor conductivity, sluggish redox kinetics, the shuttle effect, large volume variation, and low areal loading of sulfur electrodes. Now, amorphous N‐doped carbon/MoS3 (NC/MoS3) nanoboxes with hollow porous architectures have been meticulously designed as an advanced sulfur host. Benefiting from the enhanced conductivity by the N‐doped carbon, reduced shuttle effect by the strong chemical interaction between unsaturated Mo and lithium polysulfides, improved redox reaction kinetics by the catalytic effect of MoS3, great tolerance of volume variation and high sulfur loading arising from flexible amorphous materials with hollow‐porous structures, the amorphous NC/MoS3 nanoboxes enabled sulfur electrodes to deliver a high areal capacity with superior rate capacity and decent cycling stability. The synthetic strategy can be generalized to fabricate other amorphous metal sulfide nanoboxes.  相似文献   

20.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号