首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorine-containing bismuth vanadate (F:BiVO4) powder was synthesized using a new, clean, and simple solid-vapor reaction. Incorporation of fluorine mainly leads to the formation of cation vacancies. Electrodes were fabricated from the pre-synthesized powder samples by electrophoretic deposition onto fluorine-doped tin oxide coated glass slides and subsequent calcination. The photoelectrochemical performance concerning the water oxidation reaction was investigated and compared to pristine BiVO4 revealing strongly enhanced photoelectrochemical behavior for the F-containing BiVO4.  相似文献   

2.
Spinel oxides with the composition of AIIBIII2O4 (A and B are metal ions) represent an important class of anode material for water splitting to replace the currently used noble-metal catalysts. Although spinel electrocatalysts have widely been investigated for electrochemical water oxidation, the role of octahedral and tetrahedral sites influencing catalytic performance has been a topic of discussion for a long time and still under debate. Lately, this issue has been addressed by substituting redox-inert cation to the tetrahedral sites of cobalt spinels and comparing the electrochemical activity between them. However, rapid surface structural transformation of the catalysts under operating electrochemical conditions makes it difficult to infer the exact contribution of tetrahedral and octahedral sites for water oxidation. Herein, for the first time, we utilize the oxidant-driven water oxidation approach to reveal the responsible active sites using two spinel-type nanostructures, ZnIICo2IIIO4 and CoIICo2IIIO4 (Co3O4), synthesized by using a single-source precursor approach. Strikingly, a superior O2 production rate (0.98 mmolO2 molCo?1 s?1) following first-order reaction kinetics was achieved for ZnCo2O4 in the presence of CeIV as sacrificial electron acceptor compared to Co3O4 spinel (0.29 mmolO2 molCo?1 s?1). The structural and morphological stability of the ZnCo2O4 and Co3O4 post water oxidation catalysis confirms that the catalytic activity is strictly controlled by the geometry and electronic structure of the active site of the spinel structure. The higher performance of ZnCo2O4 over Co3O4 further indicates that the presence of CoII is not essential for catalytic water oxidation. The presence of redox inert ZnII at the tetrahedral site of ZnCo2O4 can facilitate the stabilization of a high-valent CoIV intermediate via oxidation of CoIII (situated at the octahedral site), and this intermediate can be regarded as the active species for water oxidation catalyst along with structural defects caused by surface Zn leaching.  相似文献   

3.
Oxidation of toluene vapors over fused bismuth vanadate catalysts of various compositions in fixed bed has been studied. The optimum conversion of toluene to benzaldehyde is related to the Bi2O3 content of the catalyst. The composition Bi2O3–V2O5(2575) and Bi2O3–V2O5 (4060) are highly active and selective for the oxidation of toluene to benzaldehyde.
. Bi2O3 . Bi2O3V2O5, 2575 4060, .
  相似文献   

4.
Novel bismuth oxide (Bi2O3) nanoporous films were fabricated through anodization of bismuth foil in electrolytes containing glycol, ammonium sulfate ((NH4)2SO4) and deionized (DI) water. Scanning electron microscopy analysis indicated that morphology of the anodized bismuth foil changed markedly along with the changing of oxidation time, water content, electrolyte concentration, temperature, and applied voltages. The optimized morphology was obtained when bismuth was anodized at 20 V, 40 °C for 40 min in glycol solution containing 0.3 wt% (NH4)2SO4 and 5 wt% DI water. The composition and crystal structure of the samples formed in the optimized conditions were characterized by energy-dispersive spectroscopy and X-ray diffraction. Results showed that the as-prepared nanoporous structures were amorphous. β-Bi2O3 was obtained when the samples were annealed at 200 °C. The photocurrent response experiments demonstrated that the Bi2O3 nanoporous film can generate photocurrent as large as 2.893 and 6.980 μA/cm2 under 0 and 0.5 V bias voltage versus saturated calomel electrode, respectively.  相似文献   

5.
Photothermal therapy (PTT) has emerged as one of the promising cancer therapy approaches. As a representative photothermal agent (PTA), magnetite possesses many advantages such as biodegradability and biocompatibility. However, photothermal instability hampers its further application. Herein, we systematically synthesized three kinds of ferrite nanoparticles and detailedly investigated their photothermal effect. Compared with Fe3O4 and MnFe2O4 nanoparticles, ZnFe2O4 nanoparticles exhibited a superior photothermal effect. After preservation for 70 days, the photothermal effect of Fe3O4 and MnFe2O4 nanoparticles observably declined while ZnFe2O4 nanoparticles showed slight decrease. Furthermore, in vitro experiment, ZnFe2O4 nanoparticles showed little toxicity to cells and achieved outstanding effect in killing cancer cells under NIR laser irradiation. Overall, through synthesizing and studying three kinds of ferrite MFe2O4 nanoparticles, we obtained ferrites as PTAs and learned about their changing trend in photothermal effect, expecting it can inspire further exploration of photothermal agents.  相似文献   

6.
BiVO(4) semiconductor electrodes were coupled with cobalt-phosphate complexes (CoPi) to enhance the photoelectrochemical (PEC) performance for water oxidation reaction. CoPi was deposited on a 550 nm-thick BiVO(4) film via electrodeposition (ED) and photodeposition (PD) methods for comparison of their effects. The CoPi on BiVO(4) exhibited Co?:?P atomic ratios of approximately 1?:?7 for the electrodeposited sample and approximately 1?:?18 for the photodeposited sample, and Co(2+) and Co(3+) co-existed in both samples. Optimized CoPi ED resulted in a CoPi overlayer of approximately 850 nm thick, which showed an electrochromic-like behavior that was likely due to limited access of phosphate into BiVO(4) across the CoPi layer. Optimized CoPi PD, however, had very thin and rather uniform CoPi dispersion and did not show electrochromic-like behavior. Despite the lesser amount of CoPi, the PEC performance of BiVO(4)/CoPi (PD) was comparable to that of BiVO(4)/CoPi (ED). Real-time measurements of the headspace molecular oxygen that evolved from water oxidation indicated that CoPi enhances O(2) production and photocurrent generation at BiVO(4) by a factor of around 15 and a maximum of 20, respectively, at 0.576 V(SCE) (equivalent to 1.23 V(RHE)) under air mass 1.5 irradiation (400 mW cm(-2)). Prolonged irradiation of BiVO(4)/CoPi (ED) resulted in a reduced Co?:?P ratio to 1?:?1.77 without changing the mixed valency of Co(II/III). This finding indicates that incorporation of phosphate into the CoPi was kinetically slower than water oxidation. The primary role of CoPi has been suggested as a hole-conducting electrocatalyst making the photogenerated electrons more mobile and, consequently, increasing conductivity and boosting the PEC water oxidation performance of BiVO(4).  相似文献   

7.
We present exemplary fabrications of controlled Nickel phosphate (NiPi)/TiO2 nanotubes arrays (TNTs) in phosphate buffer for boosted photoelectrochemical (PEC) water splitting. The TNTs/NiPi composite electrodes revealed a considerably enhanced photocurrent density of 0.76 mA/cm2, up to 3-time enhancements than bare TNTs, mostly because of the enhanced charge separation, decreased carrier recombination, and improving kinetics of the water oxidation. Also, we demonstrated that the NiPi can assist the PEC features of TNTs over a varied region of pH values from 1 to 14. Incorporation of NiPi over the TNTs surface advances the light absorption features of the electrode, resulting in an enhanced photogenerated charge carrier; and promotes the reactive sites for water oxidation, which was proved by the double-layer capacitance. The TNTs/NiPi photoelectrode exhibited excellent photostabilization under continuous illumination for 5 h, and the photoconversion efficiencies were 0.45%, 3-fold enhancements than with bare TNTs under the illuminations. Overall, this work might offer an innovative approach to fabricating and designing efficient electrodes with superior contact interfaces among photoanodes and numerous co-catalysts.  相似文献   

8.
研究了共沉淀分解法制备的ZnCo2O4纳米粒子的光学和可见光催化性能,并对其晶体结构和微观结构用X射线衍射、热重/差热分析、透射电镜和高分辨透射电镜等手段进行了表征.结果表明,制备的纳米粒子为纯相的ZnCO2O4,平均粒径约为10-20 nm.紫外-可见吸收光谱估计出ZnCo2O4纳米粒子的能带隙为3.39和2.09 eV.可见光(λ>420 nm)照射下,纳米粒子表现出降解亚甲基蓝溶液的光催化活性.ZnCo2O4纳米粒子的光催化活性可以归结为紫外和可见光下纳米粒子吸收光子(能量大于能带隙)的能力,以及它们的纳米尺寸,基于实验结果,本文提出了ZnCO2O4可能的能带结构.  相似文献   

9.
近年来, 太阳能驱动的光电化学水分解作为一种高效、环保、可持续的技术, 已经引起了广泛的关注. 为了更好地使用光电化学技术将太阳能转化为化学能, 至关重要的是提高光电极材料的光吸收和光转化效率. BiVO4禁带宽度(Eg=2.4-2.5 eV)小, 具有很好的可见光响应能力, 因此BiVO4光电极材料引起了广泛关注. 但是, 当单独BiVO4作为光电阳极材料时, 电子-空穴对分离弱、载流子传输慢, 从而使BiVO4不能很好地在光电化学水分解中发挥作用. 为了缓解或解决此类限制性因素, 本课题组通过水热法合成了NiFe双氢纳米粒子, 并将其负载于BiVO4电极表面, 光电催化分解水实验表明其产氢效率得到大幅度提高. 同时制备了Ni(OH)2/BiVO4和Fe(OH)2/BiVO4电极并用于研究NiFe/BiVO4电极的反应机理. 在上文基础上, 本文采用电子扫描电镜(SEM)、高分辨投射电镜(HRTEM)、X射线衍射(XRD)、紫外可见漫反射(UV-Vis DRS)等表征手段和线性扫描伏安法(LSV)和电流时间(I-t)等对其光电化学活性进行了测试, 研究了NiFe/BiVO4电极在发生水氧化时的反应机理. SEM结果表明, Ni(OH)2是以纳米片组成的纳米球负载于多孔BiVO4表面; 而当Fe(OH)2负载于BiVO4表面时, BiVO4的纳米尺寸减小; NiFe-LDH纳米粒子负载于BiVO4表面时, 可以明显看见BiVO4纳米颗粒表面包裹着一层更小的纳米粒子.这证明了Ni(OH)2, Fe(OH)2和NiFe-LDH纳米粒子均成功负载于BiVO4表面. 这也得到HRTEM结果的确认. UV-Vis DRS结果表明NiFe-LDH纳米粒子能有效拓宽BiVO4的吸收边, 从而增加对可见光的吸收, 增加了对光的利用率. LSV测试结果表明, 暗反应条件下Ni(OH)2/BiVO4比NiFe/BiVO4和Fe(OH)2/BiVO4电极的起始电位更低, 说明Ni(OH)2有更好的传输电子性能; 而在光照条件下, 在同一电位时NiFe/BiVO4比Ni(OH)2/BiVO4和Fe(OH)2/BiVO4电极的光电流值更高. 值得注意的是, 此时Ni(OH)2/BiVO4比Fe(OH)2/BiVO4电极的光电流值低, 这又说明Fe(OH)2比Ni(OH)2对光更敏感. 因此当NiFe-LDH纳米粒子负载于BiVO4表面时, 不仅提高了BiVO4光电极的光吸收效率, 而且加速了载流子的传输从而抑制了光生电子-空穴的复合, 使反应过程中的量子效率得到提高.  相似文献   

10.
Journal of Solid State Electrochemistry - Herein, we report the synthesis of ZnO nanorod films onto FTO (fluorine-doped tin oxide) substrates using the solution-processed electrodeposition method....  相似文献   

11.
Hematite(α-Fe_2O_3) is a promising photoanode for photoelectrochemical(PEC) water splitting.However,the severe charge recombination and sluggish water oxidation kinetics extremely limit its use in photohydrogen conversion.Herein,a co-activation strategy is proposed,namely through phosphorus(P)doping and the loading of CoAl-layered double hydroxides(CoAl-LDHs) cocatalysts.Unexpectedly,the integrated system,CoAl-LDHs/P-Fe_2O_3 photoanode,exhibits an outstanding photocurrent density of 1.56 mA/cm~2 at 1.23 V(vs.reversible hydrogen electrode,RHE),under AM 1.5 G,which is 2.6 times of pureα-Fe_2O_3.Systematic studies reveal that the remarkable PEC performance is attributed to accelerated surface OER kinetics and enhanced carrier separation efficiency.This work provides a feasible strategy to enhance the PEC performance of hematite photoanodes.  相似文献   

12.
《中国化学快报》2023,34(6):108007
Water splitting by photoelectrochemical (PEC) processes to convert solar energy into hydrogen energy using semiconductors is regarded as one of the most ideal methods to solve the current energy crisis and has attracted widespread attention. Herein, Co-based metal-organic framework (Co(bpdc)(H2O)4 (Co-MOF) nanosheets as passivation layers were in-situ constructed on the surface of BiVO4 films through an uncomplicated hydrothermal method (Co-MOF/BiVO4). Under AM 1.5G illumination, synthesized Co-MOF/BiVO4 electrode exhibited a 4-fold higher photocurrent than bare BiVO4, measuring 6.0 mA/cm2 at 1.23 V vs. RHE in 1 mol/L potassium borate electrolyte (pH 9.5) solution. Moreover, the Co-MOF/BiVO4 film demonstrated a 96% charge separation efficiency, a result caused by an inhibited recombination rate of photogenerated electrons and holes by the addition of Co-MOF nanosheets. This work provides an idea for depositing inexpensive 2D Co-MOF nanosheets on the photoanode as an excellent passivation layer for solar fuel production.  相似文献   

13.
通过"人工光合成"过程,将太阳能转化成氢能的形式加以存储和利用,是替代传统化石能源的清洁能源的制备有效途径.其中,光电化学分解水是氢能制备的最有潜力的路径之一.n型BiVO4由于具有丰富的储量、较窄的带隙以及合适的能带位置,被称为光电化学领域的研究热点.然而,未修饰的BiVO4光阳极性能并不理想,主要原因在于载流子复合严重、导电性差以及表面催化动力学低等性质的制约.科研工作者们针对这些方面已进行了非常多的研究,例如与电子传输层的复合、产氧电催化剂的担载以及异质结的构建等.其中表面动力学和电荷分离的同时提升是更理想的改善BiVO4光阳极性能的方法.我们在上述研究基础上,采用光化学沉积法在纳米多孔BiVO4电极表面担载无定形氧化铁层,将电极在1.23 V vs.RHE电位下的光电流提升至2.52 mA/cm2,是初始光电化学性能的3倍.采用间歇光照计时电流(i-t)测试,电化学交流阻抗谱(EIS),X射线光电子能谱(XPS),原位和非原位的X射线精细结构能谱(in-situ and ex-situ XAFS)等表征手段研究了无定形氧化铁层的成分和光电化学反应过程中的价态变化,从而分析出光电化学性能提升的原因.间歇光照i-t测试和EIS测试结果表明,无定形氧化铁沉积在BiVO4使电荷累积减少,复合率降低.XPS测试结果发现无定形氧化铁层存在少量的二价铁成分.通过原位XAFS测试发现,BiVO4/FeOx电极中Fe原子的价态在光照和施加外加偏压条件下会有价态的升高,而撤去光照和偏压后Fe原子的价态状态与最初非原位的测试结果重合.这样的结果证明了无定型氧化铁层在光电化学反应过程中由于二价铁成分的存在,能够很好的通过价态改变实现空穴的吸附和传输,即吸附空穴,被空穴氧化成三价或四价,同时结合自身电催化活性,促进表面分解水反应的进行.而水的氧化反应结束时,则伴随着二价铁离子的再生成.这种反应机理为开发更高效的电催化剂,匹配光电极使用,有着重大的指导意义.  相似文献   

14.
通过调变HAuCl4溶液的pH值和Au负载量,用沉积-沉淀法制备了一系列Au/Co3O4催化剂,并采用AES、BET、XRD、SEM、XPS和H2-TPR等技术对催化剂的结构和组成进行了表征,考察了制备条件对其在有氧气氛中催化N2O分解反应性能的影响规律,得到了催化剂最佳制备条件:HAuCl4溶液pH值为9,Au负载量为0.29%。催化测试结果表明:虽然ZnCo2O4的催化活性优于Co3O4,但0.31%Au/ZnCo2O4的活性和稳定性低于0.29%Au/Co3O4。500℃、在含氧气氛中连续反应10 h, 两者均可完全分解N2O,但在含氧、含水气氛中0.29%Au/Co3O4和0.31%Au/ZnCo2O4上的N2O转化率分别为92%和63%。究其原因,发现Au/Co3O4中Au和Co组分间存在协同效应,而Au/ZnCo2O4中Au和Co组分间则没有协同效应。  相似文献   

15.
光生电子-空穴对的复合被认为是限制BiVO4材料光电催化转换效率的重要原因之一。基于此,通过简单的水热-煅烧方法构筑了 BiVO4/ZnFe2O4同型异质结光阳极,BiVO4/ZnFe2O4复合光阳极在 1.23 V(vs RHE)下的光电流密度为 3.33 mA·cm-2,较纯BiVO4提升了2倍 (1.20 mA·cm-2)。相关的结构及性能测试表明,BiVO4和ZnFe2O4形成了带隙错开的n-n异质结,使得光生载流子得到有效分离,更有效地参与水氧化过程,进而提高了BiVO4的光电催化水分解性能。  相似文献   

16.
采用简单的水热法制备了多面体钒酸铋(BVO)材料,又通过化学还原法首次在BVO上原位合成了一种小尺寸的AgNi双金属助催化剂并研究了其光催化性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)、光致发光(PL)光谱、N2吸附-脱附等手段对制备的AgNi/BVO材料的理化性能进行了表征。结果表明,AgNi双金属广泛负载在这种特殊形貌的BVO多面体表面,大大增加了金属的附着位点,同时AgNi负载也提高了BVO的结晶性。银表面等离子体谐振效应与镍的共格界面效应增强了BVO催化剂对可见光的吸收,增强了光生电子的分离,提高了光催化活性。光催化降解MB (亚甲基蓝)实验表明,当Ag、Ni的质量比为3∶1时,AgNi/BVO的催化活性最高,在可见光照射下其反应速率常数是BVO的5.4倍,该光催化剂在4次循环后仍能保持良好的光催化活性。  相似文献   

17.
18.
光生电子-空穴对的复合被认为是限制BiVO4材料光电催化转换效率的重要原因之一。基于此,通过简单的水热-煅烧方法构筑了BiVO4/ZnFe2O4同型异质结光阳极,BiVO4/ZnFe2O4复合光阳极在1.23 V(vs RHE)下的光电流密度为3.33 mA·cm-2,较纯BiVO4提升了2倍(1.20 mA·cm-2)。相关的结构及性能测试表明,BiVO4和ZnFe2O4形成了带隙错开的n-n异质结,使得光生载流子得到有效分离,更有效地参与水氧化过程,进而提高了BiVO4的光电催化水分解性能。  相似文献   

19.
采用简单的水热法制备了多面体钒酸铋(BVO)材料,又通过化学还原法首次在BVO上原位合成了一种小尺寸的AgNi双金属助催化剂并研究了其光催化性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)、光致发光(PL)光谱、N2吸附-脱附等手段对制备的AgNi/BVO材料的理化性能进行了表征。结果表明,AgNi双金属广泛负载在这种特殊形貌的BVO多面体表面,大大增加了金属的附着位点,同时AgNi负载也提高了BVO的结晶性。银表面等离子体谐振效应与镍的共格界面效应增强了BVO催化剂对可见光的吸收,增强了光生电子的分离,提高了光催化活性。光催化降解MB (亚甲基蓝)实验表明,当Ag、Ni的质量比为3∶1时,AgNi/BVO的催化活性最高,在可见光照射下其反应速率常数是BVO的5.4倍,该光催化剂在4次循环后仍能保持良好的光催化活性。  相似文献   

20.
p-Type CuBi2O4 is considered a promising metal oxide semiconductor for large-scale, economic solar water splitting due to the optimal band structure and low-cost fabrication. The main challenge in utilizing CuBi2O4 as a photoelectrode for water splitting, is that it must be protected from photo-corrosion in aqueous solutions, an inherent problem for Cu-based metal oxide photoelectrodes. In this work, several buffer layers (CdS, BiVO4, and Ga2O3) were tested between CuBi2O4 and conformal TiO2 as the protection layer. RuOx was used as the co-catalyst for hydrogen evolution. Factors that limit the photoelectrochemical performance of the CuBi2O4/TiO2/RuOx, CuBi2O4/CdS/TiO2/RuOx, CuBi2O4/BiVO4/TiO2/RuOx and CuBi2O4/Ga2O3/TiO2/RuOx heterojunction photoelectrodes were revealed by comparing photocurrents, band offsets, and directed charge transfer measured by modulated surface photovoltage spectroscopy. For CuBi2O4/Ga2O3/TiO2/RuOx photoelectrodes, barriers for charge transfer strongly limited the performance. In CuBi2O4/CdS/TiO2/RuOx, the absence of hole traps resulted in a relatively high photocurrent density and faradaic efficiency for hydrogen evolution despite the presence of pronounced deep defect states at the CuBi2O4/CdS interface. Hole trapping limited the performance moderately in CuBi2O4/BiVO4/TiO2/RuOx and strongly in CuBi2O4/TiO2/RuOx photoelectrodes. For the first time, our results show that hole trapping is a key factor that must be addressed to optimize the performance of CuBi2O4-based heterojunction photoelectrodes.

CdS, BiVO4, and Ga2O3 buffer layers were tested between CuBi2O4 and TiO2 in heterojunction photoelectrodes. Photoelectrochemical analysis and modulated surface photovoltage spectroscopy revealed that interface hole traps impacted device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号