首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extraction of molybdenum by a supported liquid membrane method   总被引:1,自引:0,他引:1  
This is a report on the extraction of molybdenum(VI) ions using a supported liquid membrane, prepared by dissolving in kerosene, the extractant Alamine 336 (a long-chain tertiary amine) employed as mobile carrier. A flat hydrophobic microporous membrane was utilised as solid support. Appropriate conditions for Mo(VI) extraction through the liquid membrane were obtained from the results of liquid-liquid extraction and stripping partition experiments. The influence of feed solution acidity, the carrier extractant concentration in the organic liquid film and the content of strip agent on the metal flux through membrane were investigated. It was established that maximal extraction of metal is achieved at a pH 2.0 if sulphuric acid is used in the feed solution and at a pH value over 11.0 if Na2CO3 is used as strip agent. Moreover, the molybdenum extraction through membrane is enhanced when a 0.02 mol l−1 content of the amine carrier in the organic phase is used. The present paper deals with an equilibrium investigation of the extraction of Mo(VI) by Alamine 336 and its permeation conditions through the liquid membrane, and examines a possible mechanism of extraction.  相似文献   

2.
This paper presents an experimental and theoretical study on facilitated transport of lignosulfonate (LS) through a flat sheet supported liquid membrane using trioctylamine (TOA) as carrier and dichloroethane as diluent. The studies were carried out with various support materials and operating conditions (viz. carrier concentration, strip phase concentration, salt concentration, etc.) and their effects on the transport of LS. The results were analyzed to identify a suitable combination of support and operating condition that would yield best performance of the supported liquid membrane (SLM) in terms of fast and efficient transport of LS. The stability of the SLM was assessed in terms of loss of liquid from the pores of membrane support. The SLM is found to be stable till 10 h. Co-transport mechanism has been adopted in this work by using NaOH as the strip phase. It was observed that extraction of LS is increased with increase in concentration of NaOH up to a limiting value of 0.5 M NaOH. Difference of salt concentration between feed and strip phase considerably affect the separation process. The diffusional resistances of organic membrane (Δorg) and aqueous solution (Δaq) calculated from the permeation model, which is again a combination of three unique mechanisms viz., diffusion through a feed aqueous layer, a fast interfacial chemical reaction, and diffusion of carrier–complex through the organic membrane, are found to be 609.9 and 176.6 s cm−1, respectively. The values of the diffusion coefficient in the membrane (Dorg) and in the bulk organic phase (Dcomplex) are 1.67×10−9 and 6.68 × 10−8 m2s−1, respectively. The extraction of LS is about 90%. Nearly 43% of LS can be recovered at optimum condition.  相似文献   

3.
The potential of 3-phenyl-4-benzoylisoxazol-5-one (HPBI) as metal extractant has been evaluated for the first time for Cu(II) transport from aqueous nitrate solutions by supported liquid membrane (SLM) in the solvents chloroform, 2-nitro phenyl octyl ether (NPOE) and dodecyl nitro phenyl ether (DNPE). The efficiency of the membrane transport was optimized as a function of pH, temperature, aqueous phases and membrane composition. It follows the sequence CHCl3 > DNPE > NPOE. The results suggested that the transport mechanism was mainly controlled by the diffusion of the Cu(PBI)2 complex in the membrane core. A comparative investigation of Cu(II) transport ions has been made between SLM and polymeric plasticized membrane (PPM), containing HPBI with NPOE and DNPE as organic solvents or plasticizers in order to evaluate the feasibility of PPM with HPBI.  相似文献   

4.
This paper presents an experimental investigation on facilitated and simultaneous transport of mercury and lignosulfonate (LS) through a flat sheet supported liquid membrane (SLM) having Nylon 6,6 as support, trioctylamine (TOA) as carrier and dichloroethane as solvent. The experiments were performed at various operating conditions such as strip phase concentration, feed pH, carrier concentration and feed concentration to find the best set of parameters that would yield the maximum separation of pure mercury as well as its mixture with LS. The experiments were performed in co-transport mode using NaOH as the strip phase. It was observed that extraction of mercury as well as its mixture increases with increase in concentration of NaOH up to a certain limit 0.1 M NaOH in case of pure solution and 0.2 M NaOH in case of mixture). Feed phase pH significantly affects the mercury separation process. However, initial feed concentration does not affect the extraction process appreciably. Separation of mixture of mercury and LS behaves in a similar way as their pure solution; however the extraction is low in comparison to pure solution. The extraction of mercury from its pure solution is about 81% in 1 h. The extraction of mercury and LS from their mixture is about 52.6% and 50.2%, respectively at optimum condition and in a period of 2 h.  相似文献   

5.
《印度化学会志》2023,100(1):100781
2,4-Dichlorophenol (2,4-DCP) is one of the toxic chlorophenol compounds found in aquatic environments. Chlorophenols are priority pollutants, due to their high toxicity, mutagenicity and carcinogenicity. In this study, experiments were carried out for the removal of 2,4-Dichlorophenol (Cl2C6H3OH) from aqueous solution using commercial grade PVDF membrane immobilised with 1-Butyl-3-methyl imidazolium hexafluorophosphate [BMIM]+[PF6]- ionic liquid. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR) used to identify and to confirm the surface morphology, functional groups and operational stability of Ionic Liquid [BMIM]+[PF6]- encapsulated PVDF membrane. The effect of various factors such as feed phase pH, initial 2,4-DCP concentration, operation time and stirring speed along with different stripping agents such as NaOH, KOH and NH4OH on the removal of chlorophenols has been investigated. The maximum permeation rate of 85.52% was achieved over an experimental run of 24 at pH 4 with a strip flux of 8.18323 × 10?09 mol m?2s?1 in 0.1 M NaOH strip phase.  相似文献   

6.
Actually there is a great trend on the development of effective analytical methods for monitoring trace levels of various phenols which can indicate, among others compounds, the water quality. A simple, inexpensive supported liquid membrane (SLM) device was used in combination with commercially available capillary electrophoresis (CE) equipment for the direct determination of chlorophenols in surface water samples. The manifold was used simultaneously to extract and preconcentrate the analytes from liquid samples. In the extraction set-up, the donor phase (4 mL) was placed in the CE vial, where a micro-membrane extraction unit (MMEU) accommodating the acceptor phase (100 μL) in its lumen was immersed. The supported liquid membrane was constructed by impregnating a porous Fluoropore Teflon (PTFE) membrane with a water-immiscible organic solvent (dihexyl ether). The extraction process was optimized with regard to the pH of the donor and acceptor phases, membrane liquid, extraction time and voltage applied to the inlet or outlet vial during extraction. The chlorinated phenols pentachlorophenol (PCP), 2,3,6 trichlorophenol (TCP) and 2,6 dichlorophenol (DCP) were thus efficiently separated by CE, using tris(hydroxymethyl)aminomethane (Tris) and an NaH2PO4 solution containing 1% (v/v) methanol at pH 10.5 as running buffer.  相似文献   

7.
Electromembrane extraction (EME) of basic drugs from 10 μL sample volumes was performed through an organic solvent (2-nitrophenyl octyl ether) immobilized as a supported liquid membrane (SLM) in the pores of a flat polypropylene membrane (25 μm thickness), and into 10 μL 10 mM HCl as the acceptor solution. The driving force for the extractions was 3–20 V d.c. potential sustained over the SLM. The influence of the membrane thickness, extraction time, and voltage was investigated, and a theory for the extraction kinetics is proposed. Pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted from pure water samples with recoveries ranging between 33% and 47% after only 5 min of operation under totally stagnant conditions. The extraction system was compatible with human urine and plasma samples and provided very efficient sample pretreatment, as acidic, neutral, and polar substances with no distribution into the organic SLM were not extracted across the membrane. Evaluation was performed for human urine, providing linearity in the range 1–20 μg/mL, and repeatability (RSD) in average within 12%.  相似文献   

8.
Extraction and carrier mediated transport through bulk liquid membrane and supported liquid membrane systems have wide applications in separation technology. This paper highlights the use of six noncyclic receptors (podands) having variations in chain length and end group for the removal of urea using liquid membrane system. These receptors R1, R2, R3, R4, R5, R6 are diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, diethylene glycol dibenzoate, diethylene glycol, triethylene glycol and tetraethylene glycol respectively. The sequence of extraction and transport of urea by BLM system using various receptors is R2 > R3 > R1 > R4 > R5 > R6 and R6 ≈ R3 > R5 > R4 > R1 > R2 respectively. Receptor R2 containing butyl end group is best extractant while receptor R6 with flexible backbone is best carrier and this carrier efficiency is used to remove urea using BLM system from the feed phase by recyclization process up to 88.16%. The experimental results influenced by concentration of receptors and urea. Effect of time was also studied.  相似文献   

9.
Removal of the drug Gemfibrozil (GEM), as a target molecule, from aqueous media by using a carrier mediated transport in supported liquid membrane (SLM) and Stagnant Sandwich LM (SSwLM) systems has been investigated. Optimal chemical conditions to use in the transport tests were determined by means of solubility and liquid–liquid extraction tests. The results showed that the best LM phase to realize stable LM systems was tributylphosphate (TBP) 30% (v/v) in n-decane. Transport tests by using the “traditional” SLM system showed an average flux JAV(0–CTT) of 0.421 mmol h−1 m−2 and a system stability of 1410 min. Three different microfiltration membranes, GH-Polypro, FP-Vericel and Supor 200, made of polypropylene, polyvinylidene fluoride and polyethersulphone polymers, respectively, were used to assemble the SSwLM. Contact angle and adsorption measurements evidenced hydrophilic/lypophilic character of the supports. The best results in terms of average flux (0.873 mmol h−1 m−2), permeability coefficient (21.88 L h−1 m−2) and stability (7170 min ≈120 h) were obtained by using the SSwLM made with the Supor 200 support. The overall results showed that the SSwLM made with this type of support achieves both high flux and high stability compared to the SLM. Thus SSwLMs seems very interesting to employ transport in LM for removing molecular species (e.g. drugs) from aqueous solutions.  相似文献   

10.
Transport behaviour of Lu(III) across a polypropylene hollow fibre‐supported liquid membrane containing di(2‐ethylhexyl)phosphoric acid (DEHPA) in dihexyl ether as a carrier has been studied. The donor phase was LuCl3 in the buffer solution consisting of 0.2 M sodium acetate at pH 2.5–5.0. A miniaturised system with a single hollow fibre has been operated in a batch mode. The concentration of Lu(III) was determined by indirect voltammetric method using Zn–EDTA complex. The effect of pH and volume of the donor phase, DEHPA concentration in the organic (liquid membrane) phase, the time of extraction and the content of the acceptor phase on the Lu(III) extraction and stripping behaviour was investigated. The results were discussed in terms of the pertraction and removal efficiency, the memory effect and the mean flux of Lu(III). The optimal conditions for the removal of 177Lu(III) from labelled 177Lu‐radiopharmaceuticals were discussed and identified. The removal efficiency of Lu(III) greater than 99% was achieved at pH of the donor phase between 3.5 and 5.0 using DEHPA concentration in the organic phase of 0.47 M and the ratio of the donor to the acceptor phase of 182.  相似文献   

11.
Facilitated transport of silver ion across a supported liquid membrane (SLM) by calix[4]pyrroles, as selective ion carriers, dissolved in kerosene has been investigated. The influences of fundamental parameters affecting the transport of silver ion including ion carrier concentration in the membrane phase, thiosulfate concentration in strip phase, picric acid concentration in the feed phase, stirring speed of aqueous phases, type of membrane solvent and time of transport have been studied. In the presence of thiosulfate as a suitable metal ion acceptor in the strip phase and picrate ion as ion pairing agent in the source phase, transport of silver occurs almost quantitatively after 75 min. The selectivity and efficiency of silver transport from aqueous solution containing Cu2+, Mg2+, Ni2+, Ca2+, Zn2+, Pb2+, Co2+, Al3+, Hg2+, Cd2+, Fe3+, Fe2+ and Cr3+ were investigated.  相似文献   

12.
A method is described for measurement of freely dissolved copper concentrations in natural water samples using supported liquid membrane (SLM) extraction under equilibrium conditions, a technique denoted equilibrium sampling through membranes (ESTM). For this purpose, 1,10-dibenzyl-1,10-diaza-18-crown-6 as neutral carrier and oleic acid were used in the membrane phase. The main variables optimised were the carrier used to form the metal complexes, the organic solvent used in the membrane, the countercation, pH, the ligand used in the acceptor phase, the extraction time, and the flow rate of the donor phase. After the optimisation process an enrichment factor of 18.5 was obtained. Equilibrium conditions were reached after extraction for 60 min if a flow rate of 1.0 mL min–1 or greater was used. When different ligands such as humic acids, phthalic acid, and EDTA were added to the sample solution, and sample pH ranged from 6 to 8, the results obtained for freely dissolved copper concentrations were in a good agreement with results from speciation calculations performed with Visual Minteq V 2.30, Cheaqs V L20.1, and WinHumic V. The developed technique was applied to analysis of stream and leachate water.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
Msagati TA  Nindi MM 《Talanta》2004,64(1):87-100
A high performance liquid chromatography (HPLC) coupled to a mass spectrometer (MS) was used for a simultaneous determination of 16 sulfonamide compounds spiked in water, urine, milk, and bovine liver and kidney tissues. Supported liquid membrane (SLM) made up of 5% tri-n-octylphosphine oxide (TOPO) dissolved in hexyl amine was used as a sample clean-up and/or enrichment technique. The sulfonamides mixture was made up of 5-sulfaminouracil, sulfaguanidine, sulfamethoxazole, sulfamerazine, sulfamethizole, sulfamethazine (sulfadimidine), sulfacetamide, sulfapyridine, sulfabenzamide, sulfamethoxypyridazine, sulfamonomethoxine, sulfadimethoxine sulfasalazine, sulfaquinoxaline, sulfadiazine, and sulfathiazole. Some of these compounds, such as, sulfaquinoxaline, sulfadiazine, sulfabenzamide, sulfathiazole and sulfapyridine failed to be trapped efficiently by the same liquid membrane (5% TOPO in hexylamine). The detection limits (DL) obtained were 1.8 ppb for sulfaguanidine and sulfamerazine and between 3.3 and 10 ppb in bovine liver and kidney tissues for the other sulfonamides that were successfully enriched with SLM; 2.1 ppb for sulfaguanidine and sulfamerazine and between 7.5 and 15 ppb in cow’s urine, whereas the DL values in milk were 12.4 ppb for sulfaguanidine and sulfamerazine and between 16.8 and 24.3 for the other compounds that were successfully enriched by the membrane. Several factors affecting the extraction efficiency during SLM enrichment, such as donor pH, acceptor pH, enrichment time and the membrane solvent were studied.  相似文献   

14.
15.
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C8MIM][PF6] with 14% TOPO (w/v); donor phase: 4 mL, pH 4.5 KH2PO4 with 2 M Na2SO4; acceptor phase: 25 μL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1–0.4 μg/L, RSD ≤ 5%) and good linear range (1–2000 ng/mL, R2 ≥ 0.999) were obtained for all the analytes. The presence of humic acid (0–25 mg/L dissolved organic carbon) and bovine serum albumin (0–100 μg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2–103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.  相似文献   

16.
An artificial neural network model of supported liquid membrane extraction process with a stagnant acceptor phase is proposed. Triazine herbicides and phenolic compounds were used as model compounds. The model is able to predict the compound extraction efficiency within the same family based on the octanol–water partition coefficient, water solubility, molecular mass and ionisation constant of the compound. The network uses the back‐propagation algorithm for evaluating the connection strengths representing the correlations between inputs (octanol–water partition coefficients logP, acid dissociation constant pKa, water solubility and molecular weight) and outputs (extraction efficiency in dihexyl ether and undecane as organic solvents). The model predicted results in good agreement with the experimental data and the average deviations for all the cases are found to be smaller than ±3%. Moreover, standard statistical methods were applied for exploration of relationships between studied parameters.  相似文献   

17.
Abstract

Transport studies were carried out for carbonate ions through supported liquid membrane (SLMs) by using Alamine 336 and trioctylphosphine oxide (TOPO) as carriers. Experimental variables were investigated, such as concentration of carbonate ion (10?5 to 4×10?2 M), carriers (10?5 to 10?1 M), and alkali (0.01–0.5); and stirring speed (50–150 rpm) of bulk solutions. The use of combined carriers Alamine 336 and TOPO shows a synergic transport of carbonate ions. The stability of the SLM system in relation to the transport of carbonate ions has been studied. The enrichment of carbonate ions (10?6 to 4×10?2 M) from the dilute solution was explored. The different combinations of amines with TOPO show synergic permeability of the carbonate ions through SLM system.  相似文献   

18.
A supported liquid membrane (SLM) technique was investigated to extract and preconcentrate Mn(II) from water, milk and blood serum. Di-2-ethylhexyl phosphoric acid (DEHPA) with kerosene as diluent was used as a carrier in the membrane to transport Mn(II) from the donor side to acceptor side. The membrane was modified with tri-n-octylphosphine oxide (TOPO) to increase its polarity. Various parameters were investigated to optimise the extraction efficiency: pH of the donor and acceptor phase, dilution factor, donor flow rate. Scanning electron microscope images of the membranes revealed that some matrix compounds were deposited on the surface, thus limiting the extraction process. The optimum conditions found were: pH 3 in the donor phase, 0.2 M nitric acid in the acceptor phase, donor flow rate between 1.0 and 0.3 ml min−1, 15% (w/v) DEPHA and 10% TOPO in kerosene as a carrier in membrane, and dilution factors of 20 times for blood serum and 30 times for milk. The extraction efficiencies were found to be low but constant and highly reproducible showing, strong dependence on sample matrix. The new SLM extraction probe was developed and optimised for Mn(II) extraction. Compared to traditional SLM configurations, this is the simplest configuration. The use of stirring allows the same sample to be extracted many times giving higher extraction efficiency and to minimise the sample size. Adsorptive stripping voltammetry (AdSV) was applied to measure Mn(II) concentration. The optimised method was used to determine the concentration of Mn(II) in water, milk and blood serum samples.  相似文献   

19.
Hollow fiber supported liquid membrane microextraction, a relatively new sample preparation technique, has attracted much interest in the field of environmental analysis. In the current study, a novel method based on hollow-fiber liquid-phase microextraction and flame atomic absorption spectrometry (FAAS) for the measurement of copper ion in aqueous samples is described. Hollow-fiber liquid-phase microextraction conditions such as the type of extraction solvent, pH, the stirring rate, and the amounts of chelating agents, sample volume, and the extraction time were investigated. Under the optimized conditions, the linear range was found to be 0.01–15 μg ml?1 for copper ion, and the limit of detection to be 0.004 μg ml?1. Tap water and surface water samples collected from Mashhad, Iran and Dorongar river; Khorasan, Iran, respectively, were successfully analyzed using the proposed method. The recoveries from the spiked water samples were 72.4% and 105%, respectively; and the relative standard deviation (RSD) at the 2 μg ml?1 level was 6%.  相似文献   

20.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号