首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Woodchucks have been a preferred lab animal model of chronic hepatitis B viral infection. The model recapitulates the disease progression of HBV infection to hepatocellular carcinoma (HCC) and has documented similarities in protein glycosylation with human HCC. This study examined N‐glycans in serum of animals with(out) HCC. Oligosaccharides were released enzymatically using PNGaseF from total serum or from serum partially fractionated by extraction. Two different extraction procedures – reversed‐phase high‐performance liquid chromatography (RP‐HPLC) and solid‐phase extraction (SPE) on a cation‐exchange/reversed‐phase STRATA‐XC cartridge – were used with the purpose of confirming glycosylation profiles. Oligosaccharides were analyzed by matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) after derivatization with phenylhydrazine and/or permethylation. Characteristic fragment ions produced under MS/MS conditions allowed discrimination between isomeric structures of oligosaccharides, including those sialylated with two types of acidic residues. The complementary methods allowed structural characterization of oligosaccharides from various N‐glycan classes. Furthermore, to validate results, glycosylation profiles of woodchuck sera were compared to glycans obtained from mouse serum on the same conditions. In summary, we have identified 40 N‐glycan structures in the serum of woodchucks and some types of oligosaccharide structures appeared to increase in HCC samples following protease digest. The study provides improved tools for the characterization of N‐glycans from total serum in the progression of liver disease. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
For the analysis of native glycans using tandem mass spectrometry (MS), it is desirable to choose conditions whereby abundances of cross-ring cleavages indicative of branch positions are maximized. Recently, negative ion tandem mass spectrometry has been shown to produce significantly higher abundances of such ions in glycans compared to the positive ion mode. Much of this prior work has concerned fragmentation patterns in asialo glycans. The present work compares the abundances of critical cross-ring cleavage ions using negative mode tandem mass spectrometry for milk oligosaccharides and N-linked glycans. For comparison, product ion formation was studied for deprotonated and nitrated ions formed from asialo glycans and deprotonated ions from sialylated glycans. Breakdown profiles demonstrate clearly that more energy was required to fragment sialylated compounds to the same extent as either their asialo or nitrate adducted counterparts. The extraction of a proton from a ring hydroxyl group during the ionization process may be viewed, qualitatively, as imparting significantly more energy to the ion than would that from a molecule bearing an acidic group, so that acidic glycans are more stable in the gas phase, as the negative charge resides on the carboxyl group. These results have strong practical implications because a major portion of glycans released from mammalian proteins will be sialylated.  相似文献   

3.
The ionization and fragmentation behaviors of carbohydrate derivatives prepared by reaction with 2-aminobenzamide (AB), 1-phenyl-3-methyl-5-pyrazolone (PMP), and phenylhydrazine (PHN) were compared under identical mass spectrometric conditions. It has been shown that the intensities of signals in MS spectra depend on the kind of saccharides investigated and reducing end labels used. PMP sialyllactose, when ionized by ESI/MALDI, produced a mixture of [M + H]+, [M + Na]+, [M - H + 2Na]+ ions in the positive mode and [M - H]-, [M + Na - 2H]- ions in the negative mode. The AB and PHN derivatives formed abundant [M + H]+ and [M - H]- ions in ESI, and by matrix-assisted laser desorption/ionization (MALDI) produced abundant [M + Na]+ ions. PMP- and reduced AB-sialyllactose produced only Y-type fragment ions under both MS/MS sources. In the electrospray ionization (ESI)-MS/MS spectrum of PHN-sialyllactose, abundant ions corresponded to B, Z cleavages and in its MALDI-MS/MS spectrum, the abundant ions were consistent with Y glycosidic cleavages with the concurrence of B, C, and cross-ring fragment ions. In the MALDI-MS spectra of oligosaccharides acquired immediately after derivatization, it was possible to detect only PHN derivatives. After purification, spectra of all three types of derivatives showed high signal-to-noise ratios with the most abundant ions observed for AB reduced saccharides. [M + Na]+ ions were the dominant products and their fragmentation patterns were influenced by the type of the labeling and the kind of oligosaccharide considered. In the MALDI-PSD and -MS/MS spectra of AB-derivatized glycans, higher m/z fragment ions corresponded to B and Y cleavages and the loss of bisecting GlcNAc appeared as a weak signal or was not detected at all. Fragmentation patterns observed in the spectra of hybrid/complex PHN and PMP glycans were more comparable-higher m/z fragments corresponded to B and C glycosidic cleavages. For PHN glycans, the abundance of ions resulting from the loss of bisecting GlcNAc depended on the number of residues linked to the 6-positioned mannose. Also, PHN and PMP derivatives produced cross-ring cleavages with abundances higher than observed in the spectra of AB derivatized oligosaccharides. For high-mannose glycans, the most informative cleavages were provided by AB and PHN type of labeling. Here, PMP produced dominant Y-cleavages from the chitobiose while other ions produced weak signals.  相似文献   

4.
《Analytical letters》2012,45(11):1711-1724
Abstract

A MALDI mass spectrometry method using Bruker Daltonic's LIFT technology for MS/MS analysis has been developed for profiling and characterizing low abundant N-glycans from recombinant immunoglobulin G (IgG) antibodies. In this method, Endoglycosidase H (Endo H) released N-glycans are derivatized at their reducing end with 2-aminobenzamide (2-AB) and separated by normal phase chromatography. Endo H hydrolyses the bond between the two GlcNAc residues of the trimannosyl core of high mannose and hybrid N-linked glycans, leaving the core GlcNAc attached to the protein. High mannose and hybrid type N-glycans are released from the glycoprotein whereas the more abundant, complex biantennary type oligosaccharide structures are unaffected. Analysis of Endo H treated glycan moieties by MALDI mass spectrometry identified several minor species of high mannose and hybrid type glycans. Subsequent MALDI TOF MS/MS analysis of the resulting products yielded information about structural features of the high mannose and hybrid type glycans. This study involving Endo H treatment followed by MALDI mass spectrometry coupled with LIFT technology for MS/MS analysis offers a specific and sensitive technique for visualizing, and characterizing minor glycan species.  相似文献   

5.
Serum levels of fully sialylated C4‐binding protein (FS‐C4BP) are remarkably elevated in patients with epithelial ovarian cancer (EOC) and can be used as a marker to distinguish ovarian clear cell carcinoma from endometrioma. This study aimed to develop a stable, robust and reliable liquid chromatography–hybrid mass spectrometry (UPLC‐MS/MS) based diagnostic method that would generalize FS‐C4BP as a clinical EOC biomarker. Glycopeptides derived from 20 μL of trypsin‐digested serum glycoprotein were analyzed via UPLC equipped with an electrospray ionization time‐of‐flight mass spectrometer. This UPLC‐MS/MS‐based diagnostic method was optimized for FS‐C4BP and validated using sera from 119 patients with EOC and 127 women without cancer. A1958 (C4BP peptide with two fully sialylated biantennary glycans) was selected as a marker of FS‐C4BP because its level in serum was highest among FS‐C4BP family members. Preparation and UPLC‐MS/MS were optimized for A1958, and performance and robustness were significantly improved relative to our previous method. An area under the curve analysis of the FS‐C4BP index receiver operating characteristic curve revealed that the ratio between A1958 and A1813 (C4BP peptide with two partially sialylated biantennary glycans) reached 85%. A combination of the FS‐C4BP index and carbohydrate antigen‐125 levels further enhanced the sensitivity and specificity.  相似文献   

6.
Carbohydrates of all classes consist of glycoform mixtures built on common core units. Determination of compositions and structures of such mixtures relies heavily on tandem mass spectrometric data. Analysis of native glycans is often necessary for samples available in very low quantities and for sulfated glycan classes. Negative tandem mass spectrometry (MS) provides useful product ion profiles for neutral oligosaccharides and is preferred for acidic classes. In previous work from this laboratory, site-specific influences of sialylation on product ion profiles in the negative mode were elucidated. The present results show how the interplay of two other acidic groups, uronic acids and sulfates, determines product ion patterns for chondroitin sulfate oligosaccharides. Unsulfated chondroitin oligosaccharides dissociate to form C-type ions almost exclusively. Chondroitin sulfate oligosaccharides produce abundant B- and Y-type ions from glycosidic bond cleavage with C- and Z-types in low abundances. These observations are explained in terms of competing proton transfer reactions that occur during the collisional heating process. Mechanisms for product ion formation are proposed based on tandem mass spectra and the abundances of product ions as a function of collision energy.  相似文献   

7.
We have acquired multi-stage mass spectra (MSn) of four branched N-glycans derived from human serum IgG by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF-MS) in order to demonstrate high sensitivity structural analysis. [M+H]+ and [M+Na]+ ions were detected in the positive mode. The detection limit of [M+Na]+ in MS/MS and MS3 measurements for structural analysis was found to be 100 fmol, better than that for [M+H]+. The [M+H]+ ions subsequently fragmented to produce predominantly a Y series of fragments, whereas [M+Na]+ ions fragmented to give a complex mixture of B and Y ions together with some cross-ring fragments. Three features of MALDI-QIT-CID fragmentation of [M+Na]+ were cleared by the analysis of MS/MS, MS3 and MS4 spectra: (1) the fragment ions resulting from the breaking of a bond are more easily generated than that from multi-bond dissociation; (2) the trimannosyl-chitobiose core is either hardly dissociated, easily ionized or it is easy to break a bond between N-acetylglucosamine and mannose; (3) the fragmentation by loss of only galactose from the non-reducing terminus is not observed. We could determine the existence ratios of candidates for each fragment ion in the MS/MS spectrum of [M+Na]+ by considering these features. These results indicate that MSn analysis of [M+Na]+ ions is more useful for the analysis of complicated oligosaccharide structures than MS/MS analysis of [M+H]+, owing to the higher sensitivity and enhanced structural information. Furthermore, two kinds of glycans, with differing branch structures, could be distinguished by comparing the relative fragment ion abundances in the MS3 spectrum of [M+Na]+. These analyses demonstrate that the MSn technology incorporated in MALDI-QIT-TOF-MS can facilitate the elucidation of structure of complex branched oligosaccharides.  相似文献   

8.
We report the results of abundant plasma protein depletion on the analysis of underivatized N-linked glycans derived from plasma proteins by nanoLC Fourier-transform ion cyclotron resonance mass spectrometry. N-linked glycan profiles were compared between plasma samples where the six most abundant plasma proteins were depleted (n = 3) through a solid-phase immunoaffinity column and undepleted plasma samples (n = 3). Three exogenous glycan standards were spiked into all samples which allowed for normalization of the N-glycan abundances. The abundances of 20 glycans varying in type, structure, composition, and molecular weight (1,200–3,700 Da) were compared between the two sets of samples. Small fucosylated non-sialylated complex glycans were found to decrease in abundance in the depleted samples (greater than or equal to tenfold) relative to the undepleted samples. Protein depletion was found to marginally effect (less than threefold) the abundance of high mannose, hybrid, and large highly sialylated complex species. The significance of these findings in terms of future biomarker discovery experiments via global glycan profiling is discussed.  相似文献   

9.
This paper reports the use of an experimental matrix-assisted laser desorption/ionisation (MALDI) ion source fitted to a quadrupole time-of-flight (Q-Tof) mass spectrometer for the analysis of carbohydrates, particularly the N-linked glycans from glycoproteins. Earlier work on the Q-Tof instrument, using electrospray ionisation, gave excellent MS/MS spectra, particularly from the [M + Na]+ ions, but suffered from the major disadvantages that the signal was often split between singly and multiply charged ions and that sensitivity fell dramatically as the molecular weight of the carbohydrate rose. The MALDI ion source did not suffer from these problems and the instrument produced excellent MS and MS/MS spectra from small amounts of complex, underivatised glycans as well as those derivatised at the reducing terminus. Positive ion MS spectra of sialylated glycans recorded on the new instrument were much less complex than those recorded with a conventional MALDI-TOF instrument because of the absence of ions resulting from metastable (post-source decay, (PSD)) fragmentations occurring in the flight tube. However, considerable fragmentation by loss of sialic acid still occurred. MS/MS spectra of the [M + Na]+ ions from all compounds were almost identical to those recorded earlier with the electrospray-Q-Tof combination and far superior to MALDI-PSD spectra recorded with reflectron-TOF instruments. Spectra are shown for neutral and sialylated N-linked glycans from chicken ovalbumin, riboflavin binding protein, alpha1-acid glycoprotein, bovine fetuin and ribonuclease B, both as free glycans and as those derivatised at their reducing termini. The technique was applied to the structural determination of N-linked glycans from human secretory IgA and Apo-B 100 from human low-density lipoprotein.  相似文献   

10.
Glycans are oligosaccharides associated with proteins, and are known to confer specific functions and conformations on glycoproteins. As protein tridimensional structures are related to function, the study of glycans and their impact on protein folding can provide important information to the field of proteomics. The subdiscipline of glycomics (or glycoproteomics) is rapidly growing in importance as glycans in proteins have shown to be involved in protein-protein or protein-(drug, virus, antibody) interactions. Glycomics studies most often aim at identifying glycosylation sites, and thus are performed on deglycosylated proteins resulting in loss of site-specific details concerning the glycosylation. In order to obtain such details by mass spectrometry (MS), either whole glycoproteins must be digested and analyzed as mixtures of peptides and glycopeptides, or glycans must be isolated from glycopeptide fractions and analyzed as pools. This article describes parallel experiments involving both approaches, designed to take advantage of the StrOligo algorithm functionalities with the aim of characterizing glycosylation microheterogeneity on a specific site. A hybrid quadrupole-quadrupole-time-of-flight (QqTOF) instrument equipped with a matrix-assisted laser desorption/ionization (MALDI) source was used. Glycosylation of alpha 5 beta 1 subunits of human integrin was studied to test the methodology. The sample was divided in two aliquots, and glycans from the first aliquot were released enzymatically, labelled with 2-aminobenzamide, and identified using tandem mass spectrometry (MS/MS) and the StrOligo program. The other aliquot was digested with trypsin and the resulting peptides separated by reversed-phase high-performance liquid chromatography (HPLC). A specific collected fraction was then analyzed by MS before and after glycan release. These spectra allowed, by comparison, detection of a glycopeptide (several glycoforms) and elucidation of peptide sequence. Compositions of glycans present were proposed, and identification of possible glycan structures was conducted using MS/MS and StrOligo.  相似文献   

11.
N‐glycan structures released from miniature pig endothelial and islet cells were determined by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF), negative ion electrospray ionization (ESI) MS/MS and normal‐phase high performance liquid chromatography (NP‐HPLC) combined with exoglycosidase digestion. Totally, the identified structures were 181 N‐glycans including 129 sialylated and 18 α‐galactosylated glycans from pig endothelial cells and 80 N‐glycans including 41 sialylated and one α‐galactosylated glycans from pig islet cells. The quantity of the α‐galactosylated glycans from pig islet cells was certainly neglectable compared to pig endothelial cells. A number of NeuGc‐terminated N‐glycans (80 from pig endothelial cells and 13 from pig islet cells) are newly detected by our mass spectrometric strategies. The detailed structural information will be a matter of great interest in organ or cell xenotransplantation using α 1,3‐galactosyltransferase gene‐knockout (GalT‐KO) pig. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
For structural identification of glycans, the classic collision-induced dissociation (CID) spectra are dominated by product ions that derived from glycosidic cleavages, which provide only sequence information. The peaks from cross-ring fragmentation are often absent or have very low abundances in such spectra. Electron transfer dissociation (ETD) is being applied to structural identification of carbohydrates for the first time, and results in some new and detailed information for glycan structural studies. A series of linear milk sugars was analyzed by a variety of fragmentation techniques such as MS/MS by CID and ETD, and MS(3) by sequential CID/CID, CID/ETD, and ETD/CID. In CID spectra, the detected peaks were mainly generated via glycosidic cleavages. By comparison, ETD generated various types of abundant cross-ring cleavage ions. These complementary cross-ring cleavages clarified the different linkage types and branching patterns of the representative milk sugar samples. The utilization of different MS(3) techniques made it possible to verify initial assignments and to detect the presence of multiple components in isobaric peaks. Fragment ion structures and pathways could be proposed to facilitate the interpretation of carbohydrate ETD spectra, and the main mechanisms were investigated. ETD should contribute substantially to confident structural analysis of a wide variety of oligosaccharides.  相似文献   

13.
Negative ion nano-liquid chromatography/mass spectrometry (nano-LC/MS) and tandem mass spectrometry (nano-LC/MS(2)), using graphitised carbon as separating medium, were explored for analysing neutral and acidic O-linked and N-linked oligosaccharide alditols. Compared to the sensitivity of capillary LC/MS (flow rate of 6 microL/min) coupled with a conventional electrospray ionisation source, the nano-LC/MS (flow rate of 0.6 microL/min) with a nanoflow ion source was shown to increase the sensitivity ten-fold with a detection limit in the low-femtomole range. The absolute signals for the [M-nH](n-) ions of the oligosaccharides were increased 100-fold, enabling accumulation of high-quality fragmentation data in MS(2) mode, in which detection of low abundant sequence ions is necessary for characterisation of highly sialylated N-linked oligosaccharides. Oligosaccharides with high numbers of sialic acid residues gave dominant fragments arising from the loss of sialic acid, and less abundant fragments from cleavage of other glycosidic bonds. Enzymatic off-line desialylation of oligosaccharides in the low-femtomole range prior to MS(2) analysis was shown to increase the quality of the spectra. Automated glycofragment mass fingerprinting using the GlycosidIQ software confirmed the oligosaccharide sequence for both neutral desialylated as well as sialylated structures. Furthermore, the use of graphitised carbon nano-LC/MS enabled the detection of four sialylated O-linked oligosaccharides on membrane proteins from ovarian tissue (5 microg of total amount of protein).  相似文献   

14.
This study demonstrates the application of 2,5-dihydrohybenzoic acid/aniline (DHB/An) and 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrices for automated identification and quantitative analysis of native oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Both matrices are shown to be superior to pure DHB for native glycans in terms of signal intensities of analytes and homogeneity of sample distribution throughout the crystal layer. On-target formation of stable aniline Schiff base derivatives of glycans in DHB/An and the complete absence of such products in the mass spectra acquired in DHB/DMA matrix provide a platform for automated identification of reducing oligosaccharides in the MALDI mass spectra of complex samples. The study also shows how enhanced sensitivity is achieved with the use of these matrices and how the homogeneity of deposited sample material may be exploited for quick and accurate quantitative analysis of native glycan mixtures containing neutral and sialylated oligosaccharides in the low-nanogram to mid-picogram range.  相似文献   

15.
N-linked oligosaccharides were released from hen ovalbumin by PNGase F and derivatized with phenylhydrazine. They were then examined by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Phenylhydrazones of N-glycans under MALDI-tandem mass spectrometry (MS/MS) and post-source decay (PSD) conditions produced relatively similar fragmentation patterns; however, more cross-ring cleavages and fragment ions corresponding to low abundance isomeric structures were detected by MS/MS and not in PSD. Most fragment ions corresponded to glycosidic cleavages with preferential loss of residues from the chitobiose core and the 3-antenna. Sialylated phenylhydrazone-N-glycans, characterized here for the first time in ovalbumin by tandem mass spectrometry, underwent losses of sialic acid residues followed the same fragmentation pathways observed with neutral derivatized glycans. The relative abundances of some fragment ions indicated the linkage position of sialic acid and provided information on the number of residues attached to the 6-antenna. Also, new structures of ovalbumin glycans were observed as part of this study and are reported here.  相似文献   

16.
Hu Y  Mechref Y 《Electrophoresis》2012,33(12):1768-1777
The glycomic profiling of purified glycoproteins and biological specimen is routinely achieved through different analytical methods, but mainly through MS and LC-MS. The enhanced ionization efficiency and improved tandem MS interpretation of permethylated glycans have prompted the popularity of this approach. This study focuses on comparing the glycomic profiling of permethylated N-glycans derived from model glycoproteins and human blood serum using MALDI-MS as well as RP-LC-MALDI-MS and RP-LC-ESI-MS. In the case of model glycoproteins, the glycomic profiles acquired using the three methods were very comparable. However, this was not completely true in the case of glycans derived from blood serum. RP-LC-ESI-MS analysis of reduced and permethylated N-glycans derived from 250 nl of blood serum allowed the confident detection of 73 glycans (the structures of which were confirmed by mass accuracy and tandem MS), while 53 and 43 structures were identified in the case of RP-LC-MALDI-MS and MALDI-MS analyses of the same sample, respectively. RP-LC-ESI-MS analysis facilitates automated and sensitive tandem MS acquisitions. The glycan structures that were detected only in the RP-LC-ESI-MS analysis were glycans existing at low abundances. This is suggesting the higher detection sensitivity of RP-LC-ESI-MS analysis, originating from both reduced competitive ionization and saturation of detectors, facilitated by the chromatographic separation. The latter also permitted the separation of several structural isomers; however, isomeric separations pertaining to linkages were not detected.  相似文献   

17.
Nano-electrospray ionization quadrupole time-of-flight mass spectrometry (nanoESI-Q-TOFMS) was used for sensitive mapping and sequencing of underivatized oligosaccharide alditols obtained from human mucins. Using subnanomolar amounts of oligosaccharides previously analyzed by nuclear magnetic resonance (NMR), series of diagnostic ions relevant to the structural characterization of O-glycans were deduced. Determination of the core type as well as positions and partial linkages of fucose residues could be readily obtained from the dominant [M+Na](+) ions. Differentiation of isomeric structures and glycosidic linkages were defined by the characteristic cross-ring (0,2)A-type cleavages in the negative ion mode. Tandem (MS/MS) mass spectra of [M-H](-) ions from sialylated or sulfated O-glycans revealed information concerning the position and linkage of such residues. These fragmentation rules were further applied in the structural determination of glycans from human colonic mucins. All these findings indicated the efficiency of ESI-Q-TOFMS for the determination of oligosaccharide composition, sequence, partial linkage and substitution, providing a wealth of structural information with sensitivity sufficient for the analysis of quantities as obtained from natural sources.  相似文献   

18.
Previously, we have characterized the HIV-I(SF2) gp120 glycopeptides using matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) and nanospray electrospray ionization (ESI). Although we characterized 25 of 26 consensus glycosylation sites, we could not obtain any information about the extent of sialylation of the complex glycans. Sialylation is known to alter the biological activity of some glycoproteins, e.g., infectivity of some human and nonhuman primate lentiviruses is reduced when the envelope glycoproteins are extensively sialylated, and thus, characterization of the extent of sialylation of complex glycoproteins is of biological interest. Since neither MALDI/MS nor nanospray ESI provided much information about sialylation, probably because of suppression effects inherent in these techniques, we utilized online nanocapillary high performance liquid chromatography (nHPLC) with ESI/MS to characterize the sites and extent of sialylation on gp120. Eight of the known 26 consensus glycosylation sites of HIV-ISF2 gp120 were determined to be sialylated. Two of these sites were previously uncharacterized complex glycans. Thirteen high mannose sites were also determined. The heterogeneity of four of these sites had not been previously characterized. In addition, a peptide containing two consensus glycosylation sites, which had previously been determined to contain complex glycans, was also determined to be high mannose as well.  相似文献   

19.
The increasing interest in the development of glycoproteins for therapeutic purposes has created a greater demand for methods to characterize the sugar moieties bound to them. Traditionally, released carbohydrates are derivatized using such methods as permethylation or fluorescent tagging prior to analysis by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), or direct infusion mass spectrometry. However, little research has been performed using CE with on-line mass spectrometry (MS) detection. The CE separation of neutral oligosaccharides requires the covalent attachment of a charged species for electrophoretic migration. Among charged labels which have shown promise in assisting CE and HPLC separation is the fluorophore 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS). This report describes the qualitative profiling of charged ANTS-derivatized and underivatized complex glycans by CE with on-line electrospray ion trap mass spectrometry. Several neutral standard glycans including a maltooligosaccharide ladder were derivatized with ANTS and subjected to CE/UV and CE/MS using low pH buffers consisting of citric and 6-aminocaproic acid salts. The ANTS-derivatized species were detected as negative ions, and multiple stage MS analysis provided valuable structural information. Fragment ions were easily identified, showing promise for the identification of unknowns. N-Linked glycans released from bovine fetuin were used to demonstrate the applicability of ANTS derivatization followed by CE/MS for the analysis of negatively charged glycans. Analyses were performed on both underivatized and ANTS-derivatized species, and sialylated glycans were separated and detected in both forms. The ability of the ion trap mass spectrometer to perform multiple stage analysis was exploited, with MS5 information obtained on selected glycans. This technique presents a complementary method to existing methodologies for the profiling of glycan mixtures.  相似文献   

20.
Glycoprotein function is controlled by several biological factors, one of them being the structure of carbohydrate chains (glycans) attached to specific amino acids of the protein backbone. Changes in glycan structures have been shown to modify the secondary and tertiary conformation of glycoproteins, thus their function. Powerful analytical tools are available for the characterization of sugar structures, and recently mass spectrometry (MS) has been increasingly useful for this purpose. Manual interpretation of tandem mass spectrum is possible but tedious. Automated interpretation should speed the analysis and enhance the results obtained. A new computer program for automated interpretation of tandem MS spectra of complex N-linked glycans oligosaccharides from mammals will be described. N-Linked oligosaccharides standards were derivatized with 1-phenyl-3-methyl-5-pyrazolone (PMP) and analyzed by matrix-assisted laser desorption/ionization (MALDI)-tandem MS. Simulated tandem mass spectra of other common glycans were also generated to test the algorithm. The MALDI-MS/MS spectra featured resolved isotopic distributions for the [M + H](+) and fragment ions of oligosaccharides. These isotopic distributions complicated the automated analysis of the spectra and were removed to leave only monoisotopic peaks. An algorithm was written for this purpose, yielding simplified tandem mass spectra. Another algorithm is then used to determine the structure of the oligosaccharide. A score is then given to each structure, depending on agreement with experimental results. The program successfully assigned the true structure in 24 out of the 28 cases (86%) and the true structure was among the three top scoring structures in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号