首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maytansine, a potent clinically evaluated plant-derived anti-tumor drug, and its microbial counterpart, ansamitocin P-3, showed a substantially higher cytoxicity than many other anti-tumor drugs. Owing to a shortage of material and lack of sufficiently sensitive analytical methods at the time, no metabolism studies were apparently carried out in conjunction with the initial preclinical and clinical studies on maytansine, but some products of decomposition during the period of storage of the formulated drug were reported. In the current study, the in vitro metabolism of maytansine and ansamitocin P-3 was studied after incubation with rat and human liver microsomes in the presence of NADPH, and with rat and human plasma and whole blood, using liquid chromatography/multi-stage mass spectrometry. Unchanged ansamitocin P-3 and 11 metabolites and unchanged maytansine and seven metabolites were profiled and the structures of some metabolites were tentatively assigned based on their multi-stage electrospray ion-trap mass fragmentation data and in some cases accurate mass measurement. The major pathway of ansamitocin P-3 metabolism in human liver microsomes appears to be demethylation at C-10. Oxidation and sequential oxidation/demethylation also occurred, although to a lesser extent. However, the major pathway of maytansine metabolism in human liver microsomes is N-demethylation of the methylamide of the ester moiety. Several minor pathways including O/N-demethylation, oxidation and hydrolysis of the ester bond were also observed. There were no differences in maytansine metabolism between rat and human liver microsomes; however, the rate of metabolism of ansamitocin P-3 was different in rat and human liver microsomes. About 20% of ansamitocin P-3 was converted to its metabolites in rat liver microsomes and about 70% in human liver microsomes under the same conditions. Additionally, 10-O-demethylated ansamitocin P-3 was also detected in the urine after i.v. bolus administration of ansamitocin P-3 to Sprague-Dawley male rats. No metabolites were detected following incubation of maytansine and ansamitocin P-3 with human and rat whole blood and plasma.  相似文献   

2.
Feeding experiments with isotope-labeled precursors rule out hydroxypyruvate and TCA cycle intermediates as the metabolic source of methoxymalonyl-ACP, the substrate for incorporation of "glycolate" units into ansamitocin P-3, soraphen A, and other antibiotics. They point to 1,3-bisphosphoglycerate as the source of the methoxymalonyl moiety and show that its C-1 gives rise to the thioester carbonyl group (and hence C-1 of the "glycolate" unit), and its C-3 becomes the free carboxyl group of methoxymalonyl-ACP, which is lost in the subsequent Claisen condensation on the type I modular polyketide synthases (PKS). d-[1,2-(13)C(2)]Glycerate is also incorporated specifically into the "glycolate" units of soraphen A, but not of ansamitocin P-3, suggesting differences in the ability of the producing organisms to activate glycerate. A biosynthetic pathway from 1,3-bisphosphoglycerate to methoxymalonyl-ACP is proposed. Two new syntheses of R- and S-[1,2-(13)C(2)]glycerol were developed as part of this work.  相似文献   

3.
A combination of mutasynthesis, precursor‐directed biosynthesis and semisynthesis provides access to new ansamitocin derivatives including new nanostructured particle–drug conjugates. These conjugates are based on the toxin ansamitocin and superparamagnetic iron oxide–silica core shell particles. New ansamitocin derivatives that are functionalized either with alkynyl‐ or azido groups in the ester side chain at C‐3 are attached to nanostructured iron oxide core–silica shell particles. Upon exposure to an oscillating electromagnetic field these conjugates heat up and the ansamitocin derivatives are released by a retro‐Diels–Alder reaction. For example, one ansamitocin derivative exerts strong antiproliferative activity against various cancer cell lines in the lower nanomolar range while the corresponding nanostructured particle‐drug conjugate is not toxic. Therefore, these new conjugates can serve as dormant toxins that can be employed simultaneously in hyperthermia and chemotherapy when external inductive heating is applied.  相似文献   

4.
[structure: see text] The enantioselective total synthesis of the N-acetylcysteamine thioester of seco-proansamitocin, a key biosynthetic intermediate of the highly potent antitumor agent ansamitocin, is described, which twice utilizes the Nagao acetate aldol reaction, as well as an indium-mediated alkynylation of a benzyl bromide followed by carboalumination. The key step is a Heck reaction between two terminal alkenes for merging the two major fragments.  相似文献   

5.
Ansamitocin P‐3 is a potent anti‐tumor maytansinoid found in Actinosynnema pretiosum. However, due to the complexity of the fermentation broth of Actinomycete, how to effectively separate ansamitocin P‐3 is still a challenge. In this study, both analytical and preparative high‐performance counter‐current chromatography were successfully used to separate and purify ansamitocin P‐3 from fermentation broth. A total of 28.8 mg ansamitocin P‐3 with purity of 98.4% was separated from 160 mg crude sample of fermentation broth in less than 80 min with the two‐phase solvent system of hexane–ethyl acetate–methanol–water (0.6:1:0.6:1, v/v/v/v). The purity and structural identification were determined by HPLC, 1H NMR, 13C NMR and mass spectroscopy.  相似文献   

6.
The functions of six genes in the ansamitocin biosynthetic gene cluster of Actinosynnema pretiosum have been investigated by gene inactivation and chemical analysis of the mutants. They encode a halogenase (asm12), a carbamoyltransferase (asm21), a 20-O-methyltransferase (asm7), a 3-O-acyltransferase (asm19), an epoxidase (asm11), and an N-methyltransferase (asm10), respectively, and are responsible for the six post-PKS modification steps in ansamitocin formation. Several of the enzymes have relaxed substrate specificities, resulting in multiple parallel pathways in a metabolic grid, albeit with a preferred sequence of reactions as listed above.  相似文献   

7.
Access of four new tumor specific folic acid/ansamitocin conjugates is reported that relies on a synthetic strategy based on the combination of mutasynthesis and semisynthesis. Two bromo‐ansamitocin derivatives were prepared by mutasynthesis or by a modified fermentation protocol, respectively, that served as starting point for the semisynthetic introduction of an allyl amine linker under Stille conditions. A sequence of standard coupling steps introduced the pteroic acid/glutamic acid/cysteine unit to the modified ansamitocins. All new derivatives, including those that are expected to be generated after internalization of the folic acid/ansamitocin conjugates into the cancer cell and reductive cleavage of the disulfide linkage showed good to strong antiproliferative activity (IC50 <10 nM ) for different cancer cell lines. Finally, the four conjugates were exposed to two cancer cell lines [cervix carcinoma, KB‐3‐1 (FR+) and lung carcinoma, A‐459 (FR?)], the latter devoid of the membrane‐bound folic acid receptor (FR?). All four conjugates showed strong antiproliferative activity for the FR+ cancer cell line but were inactive against the FR? cell line. The synthetic strategy pursued is based on the combination of mutasynthesis and semisynthesis and proved to be powerful for accessing new ansamitocin derivatives that are difficult to prepare by total synthesis.  相似文献   

8.
The unusual "glycolate" extender unit at C-9/C-10 of ansamitocin is not derived from 2-hydroxymalonyl-CoA or 2-methoxymalonyl-CoA, as demonstrated by feeding experiments with the corresponding 1-13C-labeled N-acetylcysteamine thioesters but is formed from an acyl carrier protein (ACP)-bound substrate, possibly 2-methoxymalonyl-ACP, elaborated by enzymes encoded by a subcluster of five genes, asm12-17, from the ansamitocin bisosynthetic gene cluster.  相似文献   

9.
Zhao P  Bai L  Ma J  Zeng Y  Li L  Zhang Y  Lu C  Dai H  Wu Z  Li Y  Wu X  Chen G  Hao X  Shen Y  Deng Z  Floss HG 《Chemistry & biology》2008,15(8):863-874
Ansamitocins are potent antitumor maytansinoids produced by Actinosynnema pretiosum. Their biosynthesis involves the initial assembly of a macrolactam polyketide, followed by a series of postpolyketide synthase (PKS) modifications. Three ansamitocin glycosides were isolated from A. pretiosum and fully characterized structurally as novel ansamitocin derivatives, carrying a beta-D-glucosyl group attached to the macrolactam amide nitrogen in place of the N-methyl group. By gene inactivation and complementation, asm25 was identified as the N-glycosyltransferase gene responsible for the macrolactam amide N-glycosylation of ansamitocins. Soluble, enzymatically active Asm25 protein was obtained from asm25-expressing E. coli by solubilization from inclusion bodies. Its optimal reaction conditions, including temperature, pH, metal ion requirement, and Km/Kcat, were determined. Asm25 also showed broad substrate specificity toward other ansamycins and synthetic indolin-2-ones. To the best of our knowledge, this represents the first in vitro characterization of a purified antibiotic N-glycosyltransferase.  相似文献   

10.
Li Y  Zhao P  Kang Q  Ma J  Bai L  Deng Z 《Chemistry & biology》2011,18(12):1571-1580
Carbamoylation is one of the post-PKS modifications in ansamitocin biosynthesis. A novel ansamitocinoside with carbamoyl substitution at the C-4 hydroxyl group of the N-β-D-glucosyl moiety was identified from the ansamitocin producer, Actinosynnema pretiosum. Through biotransformation, the carbamoyltransferase gene asm21 was suggested to be responsible for the carbamoylation of the glucosyl moiety. Three new derivatives without the backbone carbamoyl group were isolated from an asm21 mutant and characterized by NMR spectroscopy. Among them, 18-O-methyl-19-chloroproansamitocin was the major product and the preferred substrate for macrolactam C-7 carbamoylation by Asm21. However, Asm21 exhibited higher catalytic efficiency toward the glucosyl moiety. Furthermore, the dual carbamoylations and N-glycosylation were precisely demonstrated in vivo. This work represents the first biochemical characterization of an O-carbamoyltransferase performing dual actions on both a polyketide backbone and a glycosyl moiety during ansamitocin biosynthesis.  相似文献   

11.
During impurity analysis of maytansinol (2), produced from the reduction of ansamitocin P‐3 (AP‐3, 1), a surprisingly stable acyclic hemiacetal (4) was isolated. A combination of 1D and 2D NMR experiments, along with liquid chromatography–mass spectrometry data was used to confirm the structure. Comparison of NMR data to the previously reported bridged acetal (3), a by‐product of AP‐3 reduction, supports reassignment of the latter to the former. Additionally, ROESY data, in conjunction with minimum energy calculations, support intramolecular hydrogen bonding that is involved in stabilizing the hemiacetal. This report adds another example to the very short list of isolable acyclic hemiacetals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we report the isolation, chemical characterization and structural elucidation of Ansamitocin, a new antitumor antibiotic obtained from Nocardia No. C-15003 (N-1). Ansamitocin P-3, P-3' and P-4 with molecular formulae C32H43ClN2O9, C32H43ClN2O9 and C33H45ClN2O9, respectively, were identified as novel antibiotics. Their UV spectra resemble that of maytansine obtained from a plant source. Analysis of the PMR spectrum and spin-decoup studies of P-3 demonstrated that its skeletal structure was the same as that of maytansine. Reductive cleavage of each antibiotic gave maytansinol (P-0). Alkali hydrolysis of P-3, P-3' and P-4 gave isobutyric, butyric and isovaleric acids, respectively. P-3, P-3' and P-4 were concluded to be the isobutyrate, butyrate and isovalerate ester of maytansinol at C-3, respectively. An antitumor plant product, maytanacine, and its semisynthetic derivative, maytansinol propionate, were also produced by the same strain.  相似文献   

13.
The potent antitumor activity of the ansamitocins, polyketides isolated from Actinosynnema pretiosum, is absolutely dependent on a short acyl group esterified to the C-3 oxygen of the macrolactam ring. Asm19, a gene in the ansamitocin biosynthetic gene cluster with homology to macrolide O-acyltransferase genes, is thought to encode the enzyme catalyzing this esterification. A mutant carrying an inactivated asm19 no longer produced ansamitocins but accumulated N-desmethyl-4,5-desepoxymaytansinol, rather than maytansinol, indicating that the acylation is not the terminal step of the biosynthetic sequence. Bioconversion experiments and in vitro studies with recombinant Asm19, expressed in Escherichia coli, showed that the enzyme is very specific toward its alcohol substrate, converting N-desmethyl-4,5-desepoxymaytansinol (but not maytansinol) into ansamitocins, but rather promiscuous toward its acyl substrate, utilizing acetyl-, propionyl-, butyryl-, isobutyryl-, as well as isovaleryl-CoA.  相似文献   

14.
The excellent processing stability afforded by the commercial phosphate antioxidant, Alkanox P-24 is well known in the literature. However, it is known that Alkanox P-24 is hydrolytically unstable. Enhancement of its hydrolytic stability is therefore a key objective in this work and some binary and ternary blends were developed using other additives that are often used for polymer stabilisation, including the primary antioxidant tetrakis[methylene-3-(3′,5′-di-tert-butyl-4-hydroxyhyphenyl)propionate]methane (Anox 20), acid scavengers calcium stearate (DW) and the hydrotalcite like compound (DHT-4A). An improvement in the hydrolytic stability of Alkanox P-24 was found when it was blended with these additives. A comparison with different physical forms of blends (traditional powders versus recently introduced Non-Dust Blends) was undertaken. Better performance was observed with NDB relative to the free flowing mixed powders. Spectroscopic studies (FTIR, and mass spectrometry) were also undertaken to elucidate the hydrolysis mechanism of the phosphite antioxidant Alkanox P-24. Mechanistic schemes were devised and interpreted. Hydrolysis products of Alkanox P-24 are believed to be involved in the mechanism of stabilisation. In this programme of work, the role of the hydrolysis products was investigated by controlled thermomechanical degradation in an extruder and stabilisation activity evaluated by following the yellowness index and the melt flow rate. The influence of partially hydrolysed Alkanox P-24 on polymer processing was studied. It was found that some active hydrolysis products showed significant antioxidant activity and retarded polymer degradation during processing. Mechanisms for their formation and identity are elucidated.  相似文献   

15.
P-5m, an octapeptide derived from domain 5 of HKa, was initially found to inhibit the invasion and migration of melanoma cells. The high metastatic potential of melanoma cells was prevented by the HGK motif in the P-5m peptide in vitro and in an experimental lung metastasis model, suggesting that P-5m may play an important role in the regulation of tumor metastasis. The aim of this study was to measure the effect of P-5m on tumor metastasis of human hepatocarcinoma cell line (HCCLM3) in vitro and in vivo in a nude mouse model of hepatocellular carcinoma (HCC), and detect the mechanisms involved in P-5m-induced anti-metastasis. By gelatin zymography, matrix metallo-proteinases 2 (MMP-2) activity in HCCLM3 was dramatically diminished by P-5m peptide. In addition, the migration and metastasis of HCCLM3 cells was also inhibited by the peptide in vitro. In an orthotopic model of HCC in nude mice, P-5m treatment effectively reduced the lung metastasis as well as the expression of MMP-2 in the tumor tissues. Overall, these observations indicate an important role for P-5m peptide in HCC invasion and metastasis, at least partially through modulation MMP-2 expression. These data suggests that P-5m may have therapeutic potential in metastatic human hepatocarcinoma.  相似文献   

16.
Sweet pepper is one of the most important economic fruits with nutritional attributes. In this sense, the nutraceutical value of consumed products is a major concern nowadays so the content of some bioactive compounds and antioxidants (phenols, ascorbic acid, lycopene, carotenoids, chlorophylls, and antioxidant activity) was monitored in 18 sweet pepper landraces at two maturity stages (green and red). All the traits except chlorophylls significantly increased in red fruits (between 1.5- and 2.3-fold for phenols, ascorbic acid, and 2-2-diphenyl-1-picrylhydrazyl (DPPH) inhibition activity, 4.8-fold for carotenoid and 27.4-fold for lycopene content), which suggests that ripening is key for obtaining desired fruit quality. Among landraces, P-44 in green fruits is highlighted for its content in carotenoids, chlorophylls, phenols, and ascorbic acid, and P-46 for its antioxidant capacity and lycopene content. Upon maturity, P-48, P-44, and P-41 presented higher levels of phenols and lycopene, and P-39 of phenols, carotenoid, and DPPH. This work reflects a wide variability in the 18 pepper landraces at bioactive compounds concentration and in relation to fruit ripeness. The importance of traditional landraces in terms of organoleptic properties is emphasized as they are the main source of agricultural biodiversity today and could be helpful for breeders to develop new functional pepper varieties.  相似文献   

17.
耿延候 《高分子科学》2014,32(7):844-853
Four new low-band-gap alternating copolymers (P-1, P-2, P-3 and P-4) based on electron-rich benzodithiophene and newly developed electron-deficient units, thienopyrazine or dithiadiazatrindene derivatives, were synthesized by Stille polycondensation. All polymers exhibit good solubility in common organic solvents and a broad absorption band in the visible to near-infrared regions. The film optical band gaps of the polymers are in the range of 1.28-2.07 eV and the highest occupied molecular orbital (HOMO) energy levels are in the range of-4.99 eV to -5.28 eV. Bulk heterojunction polymer solar cells (PSCs) of the polymers were fabricated with phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor material, and a power conversion efficiency of 0.80% was realized with P-1 as donor material.  相似文献   

18.
线性共轭高分子P-1是由单体1,4-二溴-2,3-二正丁氧基萘(M-2)和5,5'-二乙烯-2,2'-联吡啶(M-3)通过Pd催化Heck偶合反应合成得到,高分子配合物P-2和P-3由高分子P-1和Eu(TTA)3·2H2O和Gd(TTA)3·2H2O反应生成.高分子P-1能发射强蓝绿色荧光.高分子配合物P-2和P-3发光性能测试表明,含有Eu(Ⅲ)的高分子配合物P-2不仅显示高分子荧光,而且还显示了Eu(Ⅲ)(5D0→7F2)特征荧光,含Gd(Ⅲ)的高分子配合物P-3仅发射高分子的荧光,其荧光波长相对P-1而言,呈现13 nm红移.  相似文献   

19.
The diastereoisomeric distribution of S-3-(hexan-1-ol)cysteine (P-3SH), the cysteinylated precursor of 3-sulfanylhexan-1-ol (3SH) in Vitis vinifera grape juice, was determined by a new method. This procedure is based on the purification of P-3SH in a small volume of must (500 microL) by affinity chromatography, followed by the separation of chiral molecules in derivative forms by gas chromatography coupled with ion trap tandem mass spectrometry (GC-MS/MS). The diastereoisomers were easily separated using heptafluorobutyric anhydride and heptafluorobutanol (HFBA and HFOH) as derivatization reagents. Method validation was conducted using samples of grape juice, synthetic must, fermenting must, and wine that were fortified with P-3SH at concentrations of 0.6 and 2.5 microM. The relative standard deviation (RSD) and limit of detection (LOD) of the GC-MS/MS method were 4.6% and 1.5 nM, respectively. P-3SH assays in Bordeaux white grape juice affected by Botrytis cinerea showed an unusually increased proportion of the RS form of the precursor (approximately RR:RS=30:70) as compared to a diastereoisomer ratio (in the vicinity of 50:50) in healthy grape juice.  相似文献   

20.
The mechanism of hydrolysis under the conditions of long-term storage and the effect on stabilization efficiency of bis(2,4-di-t-butylphenyl)pentaerythrityl diphosphite (PA) was studied. Hydrolysis of P-1 under air in normal humidity begins by the cleavage of P---Ophenol bond, and both 2,4-di-t-butylphenols (DTBP) from one P-1 molecule are preferably released.

A series of samples hydrolyzed to different degrees was tested both alone and in blends with tetrakis (methylene 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) methane (AO-1) as processing and long-term antioxidants in polypropylene. P-1 was found to perform as an efficient processing antioxidant even in the absence of phenolics. Hydrolyzed P-1, characterized by the presence of 7% of free DTBP released, exhibited an improved performance. P-1 subjected to hydrolysis up to 48% was shown to retain good stabilization efficiency.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号