首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It was considered that the dissolution of cellulose in alkali solutions is mainly due to the breakage of hydrogen bonds. As an alkali hydroxide, KOH can provide OH? just like LiOH and NaOH; but it is well known that LiOH and NaOH can dissolve cellulose, whereas KOH can only swell cellulose. The inability of KOH to dissolve cellulose was investigated and the mechanism of cellulose dissolving in alkali solutions was proposed. The dissolution behavior of cellulose and cellobiose in LiOH, NaOH and KOH were studied by means of 1H and 13C NMR as well as longitudinal relaxation times. The structure and properties of the three alkali solutions were compared. The results show that alkali share the same interaction mode with cellobiose and with the magnitude of LiOH > NaOH > KOH; the alkalis influence the structure of water also in the same order LiOH > NaOH > KOH. The different behavior of the three alkalis lies in the different structure of the cation hydration ions. Li+ and Na+ can form two hydration shells, while K+ can only form loose first hydration shell. The key to the alkali solution can or cannot dissolve cellulose is whether the cation hydration ions can form stable complex with cellulose or not. K+ cannot form stable complex with cellulose result in the KOH solution can only swell cellulose.  相似文献   

3.
The structure of aqua complexes of alkali metal ions Me+(H2O) n , n = 1−6, where Me is Li, Na, K, Rb, and Cs, and complexes of 2,6-dimethylphenolate anion (CH3)2PhO selected as a model of the elementary unit of phenol-formaldehyde ion exchanger with hydrated alkali metal cations Me+(H2O) n , n = 0−5, was studied by the density functional method. The energies of successive hydration of the cations and the energies of binding of alkali metal hydrated cations with (CH3)2PhO depending on the number of water molecules n were calculated. It was shown that the dimethylphenolate ion did not have specific selectivity with respect to cesium and rubidium ions. The energies of hydration and the energies of binding of alkali metal cations with (CH3)2PhO decreased in the series Li+ > Na+ > K+ > Rb+ > Cs+ as n increased. The conclusion was drawn that the reason for selectivity of phenol-formaldehyde and other phenol compounds with respect to cesium and rubidium ions was the predomination of the ion dehydration stage in the transfer from an aqueous solution to the phenol phase compared with the stage of binding with ion exchange groups.  相似文献   

4.
The effect of electrolyte alkali metal cations (Li+, Na+, or K+) on the electro-oxidation of urea and benzyl alcohol on NiOOH catalyst has been investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing LiOH, NaOH, or KOH. The catalytic activity toward the electro-oxidation of urea and benzyl alcohol was found to increase in the sequence Li+ < Na+ < K+. This activity's difference is partly caused by different surface blockage abilities by OH–M+(H2O)x (M: Li, Na, K) clusters, which is similar to many electrocatalytic reactions on Pt reported previously, additionally, incorporation of various cations to the catalyst may induce the activities difference as well.  相似文献   

5.
The iron(III) dimeric complex [Fe2(CN)10]4− is reduced to the iron(III)iron(II) species [Fe2(CN)10]5− by iodide ion, the equilibrium constant being strongly dependent upon the nature of the alkali metal cation, reduction being favoured in the sequence: Cs+>NH 4 + ≥K+>Na+>Li+. The reaction kinetics are autocatalytic in character, the catalytic species being the mixed valence dimer. The rates of reactions are also strongly catalysed by alkali metal cations, in the same sequence as for the equilibrium constants. The reaction mechanism involves the formation of I 2 as a reactive intermediate which can be oxidised by both [Fe2(CN)10]4− and [Fe2(CN)10]5−.  相似文献   

6.
The structures of 18-crown-6 (18C6) complexes with K+ and Rb+ in methanolic solutions have been studied by X-ray absorption fine structure (XAFS) at the Br K-edge as well as at the K and Rb K-edges. The XAFS spectrum at the K or Rb K-edge has indicated that either Br or solvent (methanol) molecules are present in the first coordination shell of K+ or Rb+ complexed by 18C6. However, the spectra obtained at the Br-K edge have strongly suggested that the alkali cations do not exist in the vicinity of Br, indicating that no direct ion-pairing occurs between the 18C6 complex and Br. The 18C6-K+ complex maintains D 3d symmetry even in methanol, and two methanol molecules coordinate the cation possibly from above and below the crown plane. In contrast, the corresponding Rb+ complex possibly forms an umbrella-shaped complex, in which Rb+ is situated slightly off the crown plane and three solvent molecules bind With the cation.  相似文献   

7.
DFT (B3LYP functional) and MP2 methods using 6-311+G(2d,2p) basis set have been employed to examine the effect of ring fusion to benzene on the cation--π interactions involving alkali metal ions (Li+, Na+, and K+) and alkaline earth metal ions (Be2+, Mg2+ and Ca2+). Our present study indicates that modification of benzene (π-electron source) by fusion of monocyclic or bicyclic (or mixture of these two kinds of rings) strengthens the binding affinity of both alkali and alkaline earth metal cations. The strength of interaction decreases in the following order: Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+ for any considered aromatic ligand. The interaction energies for the complexes formed by divalent cations are 4–6 times larger than those for the complexes involving monovalent cations. The structural changes in the ring wherein metal ion binds are examined. The distance between ring centroid and the metal ion is calculated for all of the complexes. Strained bicyclo[2.1.1]hexene ring fusion has substantially larger effect on the strength of cation--π interactions than the monocyclic ring fusion for all of the cations due to the π-electron localization at the central benzene ring.  相似文献   

8.
Solid alkaline metal hydroxides displayed high catalytic activity and full selectivity in the aerobic oxidation of benzylic alcohols in a non-polar medium. The activity of the solid bases, in decreasing order of reactivity, was KOH > NaOH ≫ LiOH. Water, which is the only by-product of the reaction, plays a crucial role in KOH deactivation by converting the crystal phase of KOH to KOH · H2O, as confirmed by XRD measurements.  相似文献   

9.
A simplified version of Harned's conductimetric technique has been used to measure binary diffusion coefficients of aqueous lithium, sodium, and potassium hydroxides at 25°C from 0.002 to 0.14 mol-dm–3. Because of the large difference in mobility between OH and the cations, the electrophoretic effect tends to reduce the rate of diffusion of the alkali metal hydroxides; the largest effect is observed for LiOH solutions. The measured diffusion coefficients are in excellent agreement with predictions of the Onsager-Fuoss theory of ion transport. Precise activity coefficients determined from the diffusion measurements are compared with activity coefficients obtained previously by emf methods.  相似文献   

10.
A thermodynamic study on the interaction between the Cu2+ ion and human growth hormone (hGH) was studied at the temperatures 300.15 and 310.15 K in NaCl solution using isothermal titration calorimetry. The new solvation model was used to reproduce the enthalpies of Cu2++hGH interaction over the whole range of Cu2+ concentrations. It was found that there is a set of three identical and non-interacting binding sites for Cu2+ ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 1313.4 μmol⋅L−1 and −16.80 kJ⋅mol−1 at 300.15 K, and 1648.2 μmol⋅L−1 and −16.40 kJ⋅mol−1 and 310.15 K, respectively. The binding parameters recovered from the new equation are attributed to a structural change of hGH and its biological activity due to metal ion interaction.  相似文献   

11.
Surface titrations were carried out on suspensions of monoclinic ZrO2 from 25 to 290 °C slightly above saturation vapor pressure at ionic strengths of 0.03, 0.1 and 1.0 mol⋅kg−1(NaCl). A typical increase in surface charge was observed with increasing temperature. There was no correlation between the radius of the cations, Li+, Na+, K+ and (CH3)4N+, and the magnitude of their association with the surface. The combined results were treated with a 1-pKa MUSIC model, which yielded association constants for the cations (and chloride ion at low pH) at each temperature. The pH of zero-point-charge, pHzpc, decreased with increasing temperature as found for other metal oxides, reaching an apparent minimum value of 4.1 by 250 °C. Batch experiments were performed to monitor the concentration of LiOH in solutions containing suspended ZrO2 particles from 200 to 360 °C. At 350 and 360 °C, Li+ and OH ions were almost totally adsorbed when the pressure was lowered to near saturation vapor pressure. This reversible trend has implications not only to pressure-water reactor, PWR, operations, but is also of general scientific and other applied interest. Additional experiments probed the feasibility that boric acid/borate ions adsorb reversibly onto ZrO2 surfaces at near-neutral pH conditions as indicated in earlier publications. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

12.
Published data on the interaction of lithium with aqueous solutions of alkali metal hydroxides are discussed. The behavior of lithium in aqueous solutions of LiOH and KOH was studied experimentally.  相似文献   

13.
NMR spectroscopy was used to show that the symmetry of the crown ether bis(C6) is increased by an increase of the alkali metal cation radius. The EXAFS spectrum demonstrates that a seven oxygen atom coordinated configuration is present in the bis(C6)/Cs+/NPME system, where NPME denotes o-nitrophenylmethyl ether. The seventh oxygen in this complex, besides the six crown ether oxygens of bis(C6), may come either from a H2O molecule or an NO3 ion.  相似文献   

14.
The degrees of salt sorption were determined in lyocell and viscose fibers immersed in aqueous solutions of salt–alkali mixtures with the aim of using salt sorption as an indirect measure of changes to fiber accessibility in presence of alkali. The salt–alkali mixtures used were combinations of NaOH with NaCl or NaBr, and of KOH with KCl or KBr. In general, salt sorption in fibers increased with increase in alkali concentration up to 2 mol/l, and did not change significantly thereafter. The accessibility of Br salts was greater than the Cl salts, but that of the Na+ salts was greater than the K+ salts. These trends in salt sorption indicate that salt accessibility in fibers is not influenced by the size of hydrated salt ions, but by the forces of electrostatic attraction and repulsion between the charged fiber surface and salt cations and anions.  相似文献   

15.
Low-energy CAD product-ion spectra of various molecular species of phosphatidylserine (PS) in the forms of [M−H] and [M−2H+Alk] in the negative-ion mode, as well as in the forms of [M+H]+, [M+Alk]+, [M−H+2Alk]+, and [M−2H+3Alk]+ (where Alk=Li, Na) in the positive-ion mode contain rich fragment ions that are applicable for structural determination. Following CAD, the [M−H] ion of PS undergoes dissociation to eliminate the serine moiety (loss of C3H5NO2) to give a [M−H−87] ion, which equals to the [M−H] ion of a phoshatidic acid (PA) and give rise to a MS3-spectrum that is identical to the MS2-spectrum of PA. The major fragmentation process for the [M−2H+Alk] ion of PS arises from primary loss of 87 to give rise to a [M−2H+Alk−87] ion, followed by loss of fatty acid substituents as acids (RxCO2H, x=1,2) or as alkali salts (e. g., RxCO2Li, x=1,2). These fragmentations result in a greater abundance of [M−2H+Alk−87−R2CO2H] than [M−2H+Alk−87−R1CO2H] and a greater abundance of [M−2H+Alk−87−R2CO2Li] than [M−2H+Alk−87−R1CO2Li]; while further dissociation of the [M−2H+Alk−87−R2(or 1)CO2Li] ions gives a preferential formation of the carboxylate anion at sn-1 (R1CO2) over that at sn-2 (R2CO2). Other major fragmentation process arises from differential loss of the fatty acid substituents as ketenes (loss of Rx′CH=CO, x=1,2). This results in a more prominent [M−2H+Alk−R2′CH=CO] ion than [M−2H+Alk−R1′CH=CO] ion. Ions informative for structural characterization of PS are of low abundance in the MS2-spectra of both the [M+H]+ and the [M+Alk]+ ions, but are abundant in the MS3-spectra. The MS2-spectrum of the [M+Alk]+ ion contains a unique ion corresponding to internal loss of a phosphate group probably via the fragmentation processes involving rearrangement steps. The [M−H+2Alk]+ ion of PS yields a major [M−H+2Alk−87]+ ion, which is equivalent to an alkali adduct ion of a monoalkali salt of PA and gives rise to a greater abundance of [M−H+2Alk−87−R1CO2H]+ than [M−H+2Alk−87−R2CO2H]+. Similarly, the [M−2H+3Alk]+ ion of PS also yields a prominent [M−2H+3Alk−87]+ ion, which undergoes consecutive dissociation processes that involve differential losses of the two fatty acyl substituents. Because all of the above tandem mass spectra contain several sets of ion pairs involving differential losses of the fatty acid substituents as ketenes or as free fatty acids, the identities of the fatty acyl substituents and their positions on the glycerol backbone can be easily assigned by the drastic differences in the abundances of the ions in each pair.  相似文献   

16.
Knowledge about how different metal ions are bound to pulp fibers is very important for optimal metal management in pulping processes. A column chromatographic method was used to assess the differences in affinity of 14 metal ions to untreated, alkali-treated and peroxide-bleached thermomechanical pulp (TMP). A method of competition between cations in the column chromatographic experiments was used in the sorption experiments, with an excess of each metal ion compared to the total capacity of the pulp studied. The method is very sensitive and even small differences in affinities can be detected. By combining the results from sorption experiments with four different metal ion mixtures the following order of affinity was obtained: Pb2+ ≫ Cu2+ ≫ Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Mn2+ > Sr2+ > Mg2+ ≫ Rb+ ≈ K+ > Na+ > Li+. All three types of pulps showed the same affinity order. Lead and copper ions were clearly most strongly bound to the pulp fibers. Within the alkali and alkaline earth metal groups the differences in affinity were quite small. The sorption of metal ions to pulp fibers takes place mainly by complexation, where the divalent metal ions are coordinated to functional groups (acid groups) in the fiber phase. Protonation constants and concentrations of acid groups were determined by potentiometric titration. A model with two carboxyl groups and two phenolic hydroxyl groups satisfied best the experimental data. By treatment with alkali and peroxide new acid groups were created and the total binding capacity of hydrogen ions increased from 137 μeq/g for untreated pulp to 187 and 228 μeq/g for alkali-treated and peroxide-treated pulp, respectively.  相似文献   

17.
The electrochemical reduction of CO2 with a Cu electrode in methanol was investigated with sodium hydroxide supporting salt. A divided H-type cell was employed; the supporting electrolytes were 80 mmol dm−3 sodium hydroxide in methanol (catholyte) and 300 mmol dm−3 potassium hydroxide in methanol (anolyte). The main products from CO2 were methane, ethylene, carbon monoxide, and formic acid. The maximum current efficiency for hydrocarbons (methane and ethylene) was 80.6%, at −4.0 V vs Ag/AgCl, saturated KCl. The ratio of current efficiency for methane/ethylene, r f(CH4)/r f(C2H4), was similar to those obtained in LiOH/methanol-based electrolyte and larger relative to those in methanol using KOH, RbOH, and CsOH supporting salts. In NaOH/methanol-based electrolyte, the efficiency of hydrogen formation, a competing reaction of CO2 reduction, was suppressed to below 4%. The electrochemical CO2 reduction to methane may be able to proceed efficiently in a hydrophilic environment near the electrode surface provided by sodium cation.  相似文献   

18.
An ion chromatographic method has been developed for the determination of traces of Li+, Na+, K+, Ca2+, Mg2+, Sr2+, Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Mn2+ in UO2, ThO2 powders and sintered (Th,U)O2 pellets. This new method utilizes poly-(butadiene-maleic acid) (PBDMA) coated silica cation exchange column and mixed functionality column of anion and cation exchange to achieve the separation of alkali, alkaline earths and transition metal ions, respectively. It involves matrix separation after sample dissolution by solvent extraction with TBP (tri butyl phosphate)-TOPO (tri octyl phosphine oxide)/CCl4. Interference of transition metal ions in the determination of alkali, alkaline earth metal ions are removed by using pyridine 2,6-dicarboxylic acid (PDCA) in the tartaric acid mobile phase. Mobile phase composition is optimized for the base line separation of alkali, alkaline earth and transition metal ions. Linear calibration graphs in the range 0.01–20 μg mL−1 were obtained with regression coefficients better than 0.999. The respective relative standard deviations were also determined. Recoveries of the spiked samples are within ±10% of the expected value. The developed method is authenticated by comparison with certified standards of UO2 and ThO2 powders.  相似文献   

19.
Regular hexagonal Co–Al layered double hydroxides (Co–Al LDH) were synthesized by urea-induced homogeneous precipitation. This material proved to be nanosheets by scanning electron microscopy and X-ray diffraction measurements. The electrochemical capacitive behavior of the nanosheets in 1 M KOH solution were evaluated by constant current charge/discharge and cyclic voltammetric measurements, showing a large specific capacitance of 192 F·g−1 even at the high current density of 2 A·g−1. When multiwall carbon nanotubes (MWNTs) were mixed with the Co–Al LDH, it was found that the specific capacitance and long-life performance of all composite electrodes at high current density are superior to pure LDH electrode. When the added MWNTs content is 10 wt%, the specific capacitance increases to 342.4 F·g−1 and remains at a value of 304 F·g−1 until the 400th cycle at 2 A·g−1, showing that this is a promising electrode material for supercapacitors working at heavy load. According to the electrochemical impedance spectra, MWNTs greatly increase the electronic conductivity between MWNTs and the surface of Co–Al LDH, which consequently facilitates the access of ions in the electrolyte and electrons to the electrode/electrolyte interface.  相似文献   

20.
《Analytical letters》2012,45(5):335-341
Abstract

The stability constants of several alkali metal ion complexes with the macrotetrolides were determined polarographically in acetonitrile. For any single alkali metal ion the stability constant increased in the order nonactin < monactin < dinactin < trinactin. Their values are larger than those found in methanol. The Stoke's radii estimated from the limiting diffusion currents of the complexes increase with increasing crystallographic radius of the cation. The increasing strain on the ligand causes a decrease of stability constant for Rb+ and Cs+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号