首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete periodic series of alkali and alkaline earth cation variants (Li(+), Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), and Ba(2+)) of clinoptilolite (Si : Al=5) and heulandite (Si : Al=3.5) aluminosilicate zeolites are examined by large-scale molecular dynamics utilizing a flexible SPC water and aluminosilicate force field. Calculated hydration enthalpies, radial distribution functions, and ion coordination environments are used to describe the energetic and structural components of extra-framework species while power spectra are used to examine the intermolecular dynamics. These data are correlated to evaluate the impact of ion-zeolite, ion-water, and water-zeolite interactions on the behavior of nanoconfined water. Analysis of the correlated data clearly indicates that the charge density of extra-framework cations appears to have the greatest influence on librational motions, while the anionic charge of the framework (i.e. Si:Al ratios) has a lesser impact.  相似文献   

2.
乙硫醇在MFI和MOR沸石中扩散行为的分子动力学模拟   总被引:3,自引:0,他引:3  
采用分子动力学方法模拟计算了乙硫醇分子在MFI和MOR两种拓扑结构沸石中的动力学性质,比较了乙硫醇不同负载量和沸石晶格原子刚性和柔性两种状态下乙硫醇分子在沸石孔道中扩散系数的大小。模拟结果表明,对于这两种沸石,负载量增加,扩散系数减小。对于MFI沸石,在刚性和柔性沸石结构的情况下,扩散系数分别为3×10-10m2/s和4×10-9m2/s;对于MOR沸石,在刚性和柔性结构的情况下,扩散系数分别为2×10-7m2/s和3×10-8m2/s。对于MFI沸石,柔性结构下的扩散系数比刚性结构下的扩散系数要大,而对于MOR却呈现出相反的行为。对比这两种沸石,MOR中的扩散系数要比MFI沸石中大,这是因为乙硫醇分子在MOR12元环中扩散更易进行所致。相互作用能的计算结果表明,MFI中交叉型和直型孔道活性位相近,MOR孔道中12元环与4元环孔道相差较大。  相似文献   

3.
In this work, adsorption and diffusion of trichloroethylene (TCE) and tetrachloroethylene (PCE) in ZSM-5-type zeolites were studied using molecular simulation methods. Grand canonical Monte Carlo technique was to calculate adsorption isotherms and heats of vaporization of TCE and PCE in zeolite. The results demonstrated that the Pnma-P2(1)2(1)2(1) symmetry transition of the zeolite framework has no significant effect on the TCE adsorption capacity of the silicalite, but it causes an increase of the PCE adsorption capacity. Simulations using a silicalite framework with Pnma symmetry showed that the adsorption capacity of the silicalite was limited to five molecules per unit cell. However, when a framework with P2(1)2(1)2(1) symmetry was used in the simulations, the capacity reached to eight molecules per unit cell, which is the actual adsorption capacity. To calculate intracrystalline diffusion coefficients of these compounds, molecular dynamics simulations were performed at different temperatures and loadings. The results show that the zeolite symmetry has a significant impact on diffusion coefficients of the sorbate molecules.  相似文献   

4.
The conformational behavior of cellobiose was studied by molecular dynamics simulation in a periodic box of waters. Several different initial conformations were used and the results compared with equivalent vacuum simulations. The average positions and rms fluctuations within single torsional conformations of cellobiose were affected only slightly by the solvent. However, water damped local torsional librations and transitions. The conformational energies of the solute and their fluctuations were also sensitive to the presence of solvent. Intramolecular hydrogen bonding was weakened relative to that observed in vacuo due to competition with solvating waters. All cellobiose hydroxyl groups participated in intermolecular hydrogen bonds with water, with approximately eight hydrogen bonds formed per glucose ring. The hydrogen bonding was predominantly between water hydrogens and solute hydroxyl oxygens. Intermolecular hydrogen bonding to ring and bridge oxygens was seldom present. The diffusion coefficients of both water and solute agree closely with experimental values. Water interchanged rapidly between the solvating first shell and the bulk on the picosecond time scale. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
液态水的分子动力学模拟   总被引:2,自引:0,他引:2  
用分子动力学(MD)模拟方法在150~376K的温度范围内对液态水的微正则系统进行了研究。考察了液态水的结构及其性质。模拟采用了由从头算得出的柔性水-水相互作用势MCYL。对时间和空间的平均得出了液态中水分子几何构型及温度改变所引起的液态水结构变化。对径向分布函数gOH, gOO, gHH及配位数的分析表明, 在所考察的温度范围内, 每个水分子与相邻分子形成的氢键数为2~3, 水分子在参与的2个氢键中同时作为授受体。结合对振动谱的研究表明在低温时液态水形成的网络结构可能随温度的升高而形成小的簇结构。  相似文献   

6.
The effect of strong and weak hydrophilic sites, Al atoms with associated extraframework Na cations and silanol nests, respectively, in high-silica MFI zeolites on water adsorption was investigated using Monte Carlo simulations. For this purpose, a new empirical model to represent potential energy interactions between water molecules and the MFI framework was developed, which reproduced the hydrophobic characteristics of a siliceous MFI-type zeolite, silicalite-1, with both the vapor-phase adsorption isotherm and heats of adsorption at 298 K being in good agreement with experimental data. The proposed model is also compatible with previous hydrocarbon potential models and can be used in the adsorption simulations of VOC-water mixtures. Adsorption simulations revealed that strongly hydrophilic Al sites in Na-ZSM-5 zeolites coordinate two water molecules per site at low coverage, which promotes water clustering in the vicinity of these sites. However, weakly hydrophilic silanol nests in silicalite-1 are in coordination with a single water molecule per site, which does not affect the adsorption capacity significantly as expected. However, even in the presence of 0.125 silanol nest per unit cell, the increase in the heat of adsorption at low coverage is drastic.  相似文献   

7.
Molecular simulations were performed to study the interactions between a protein (lysozyme, LYZ) and phosphorylcholine-terminated self-assembled monolayers (PC-SAMs) in the presence of explicit water molecules and ions. The results show that the water molecules above the PC-SAM surface create a strong repulsive force on the protein as it approaches the surface. The structural and dynamic properties of the water molecules above the PC-SAM surface were analyzed to provide information regarding the role of hydration in surface resistance to protein adsorption. It can be seen from residence time dynamics that the water molecules immediately above the PC-SAM surface are significantly slowed down as compared to bulk water, suggesting that the PC-SAM surface generates a tightly bound, structured water layer around its head groups. Moreover, the orientational distribution and reorientational dynamics of the interfacial water molecules near the PC-SAM surface were found to have the ionic solvation nature of the PC head groups. These properties were also compared to those obtained previously for an oligo(ethylene glycol) (OEG) SAM system and bulk water.  相似文献   

8.
The applicability of a recently proposed force field of Calero et al. (J. Am. Chem. Soc., 2004, 126, 11377) to Na-MOR zeolites is evaluated. The Henry law coefficients of ethane and C(5)-C(9) as well as the adsorption isotherms of ethane, propane, butane, and hexane in various Na-MOR zeolites are computed and compared with experimental values. These comparisons show that the new force field is suitable for Na-MOR zeolites. Furthermore, this force field is used to study the effects of sodium cations on the adsorption behavior of larger alkanes, such as C(4)-C(7), in MOR-type zeolites. These simulations give a better understanding of the underlying mechanisms of the cations' position and density influence on adsorption. In addition, a characteristic pressure named "reversal pressure" is introduced which characterizes the efficiency of the presence of cations in zeolites.  相似文献   

9.
《Chemical physics letters》2006,417(1-3):251-255
Molecular dynamics simulations of hydrated Na–LSX zeolite at 300 K were performed with the explicit inclusion of the polarization of water. The Si/Al ratio of LSX is 1 and the number of water molecules per unit cell ranged from 0 to 224 to represent a range of hydration. The calculation results show that the dipole moments of water molecules increase with increasing hydration. By using the SPC–FQ water model instead of the SPC/E water model, the differential heat of adsorption showed similar trends in both models, whereas the differential potential energies between water–water and between water–zeolite are more sensitive to hydration.  相似文献   

10.
In this work, we present results from molecular dynamics simulations on the single-molecule relaxation of water within reverse micelles (RMs) of different sizes formed by the surfactant aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulfosuccinate) in isooctane. Results are presented for RM water content w(0) = [H(2)O]/[AOT] in the range from 2.0 to 7.5. We show that translational diffusion of water within the RM can, to a good approximation, be decoupled from the translation of the RM through the isooctane solvent. Water translational mobility within the RM is restricted by the water pool dimensions, and thus, the water mean-squared displacements (MSDs) level off in time. Comparison with models of diffusion in confined geometries shows that a version of the Gaussian confinement model with a biexponential decay of correlations provides a good fit to the MSDs, while a model of free diffusion within a sphere agrees less well with simulation results. We find that the local diffusivity is considerably reduced in the interfacial region, especially as w(0) decreases. Molecular orientational relaxation is monitored by examining the behavior of OH and dipole vectors. For both vectors, orientational relaxation slows down close to the interface and as w(0) decreases. For the OH vector, reorientation is strongly affected by the presence of charged species at the RM interface and these effects are especially pronounced for water molecules hydrogen-bonded to surfactant sites that serve as hydrogen-bond acceptors. For the dipole vector, orientational relaxation near the interface slows down more than that for the OH vector due mainly to the influence of ion-dipole interactions with the sodium counterions. We investigate water OH and dipole reorientation mechanisms by studying the w(0) and interfacial shell dependence of orientational time correlations for different Legendre polynomial orders.  相似文献   

11.
Many properties of silicon carbide (SiC) nanotubes, such as their high mechanical strength and resistance to corrosive environments, are superior to those of their carboneous counterparts, namely, carbon nanotubes (CNTs) and, therefore, SiC nanotubes can be a viable alternative to CNTs in a variety of applications. We employ molecular dynamics simulations to examine flow of water in SiC nanotubes and to study the differences and similarities with the same phenomenon in the CNTs. The simulations indicate that SiC nanotubes always provide larger flow enhancements than those reported for the CNTs. Moreover, a given flow enhancement in SiC nanotubes requires an applied pressure gradient that is at least an order of magnitude smaller than the corresponding value in a CNT of the same size.  相似文献   

12.
13.
14.
Conclusions By titration with Fischer's solution and thermodesorption the authors show that the firmly combined water conteat of Y-type zeolites depends on the nature of the ion-exchange cation and the heat-treatment conditions.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 276–279, February, 1976.  相似文献   

15.
A molecular dynamics simulation, lasting ≈25 ps, has been performed with 150 ST2 water molecules between two quasi-hard repulsive walls, at a temperature of 302 K. A number of static and dynamic properties have been computed as a function of the distance from the walls, showing that water near the walls is in general more “ordered” than in the bulk, and that this bulk water behaves like ordinarv liquid ST2 water.  相似文献   

16.
The structure and dynamics of the neat water|nitrobenzene liquid|liquid interface are studied at 300 K using molecular dynamics computer simulations. The water is modeled using the flexible SPC potential, and the nitrobenzene is modeled using an empirically determined nitrobenzene potential energy function. Although nitrobenzene is a polar liquid with a large dielectric constant, the structure of the interface is similar to other water|non-polar organic liquid interfaces. Among the main structural features we describe are an enhancement of interfacial water hydrogen bonds, the specific orientation of water dipoles and nitrobenzene molecules, and a rough surface that is locally sharp. Surface roughness is also characterized dynamically. The dynamics of molecular reorientation are shown to be only mildly modified at the interface. The effect due to the polarizable many-body potential energy functions of both liquids is investigated and is found to affect only mildly the above results.  相似文献   

17.
《Chemical physics letters》1986,123(3):218-221
First results of a molecular dynamics study of a water/metal interface, lasting 3.3 ps at an average temperature of 294 K, are reported. The basic periodic box contains 216 water molecules and a crystal slab of 550 platinum atoms with (100) surface planes. A combination of a Lennard-Jones potential between centers of mass and a Coulomb potential arising from dielectric interactions of the water charge distribution with the metal is employed for the water-wall interaction, the ST2 model for the water-water, and a nearest-neighbour harmonic potential for the platinum-platinum interactions. Considerable adsorption at the interface together with a drastic change of the water structure is observed.  相似文献   

18.
We apply molecular dynamics (MD) simulations to the study of the association of nonpolar spheres of effective radii between 1.6 and 6.1 A dissolved in water. The constrained MD method is used to calculate the potential of mean force (PMF) of the interaction between spheres. The depth of the potential of mean force increases with increasing radius of the nonpolar sphere. Our results suggest that the PMF is largely governed by size or entropic effects, and that energetic effects associated with the breaking or distortion of hydrogen bonds are of minor importance.  相似文献   

19.
Development of more efficient solvent solutions for removal of CO(2) from natural gas and flue gases is a major task, which contributes to improved design of process plants and leads to decreased costs for its removal. Understanding the mechanisms of CO(2) absorption as well as analysis of undesired simultaneous processes is crucially important in this regard. In this work, we have applied Molecular Dynamics (MD) to investigate the absorption of CO(2) from a binary mixture of CO(2) and CH(4) into aqueous piperazine activated MDEA solution. The MD simulations were performed at a constant temperature of 298 K for five different systems with a loading factor of 0.07 to provide insight into molecular distribution in the amine solution and to enhance understanding of absorption mechanisms on the molecular scale. Force field parameters that were missing from the OPLS-AA force field, as well as charge distribution of piperazine (PZ), protonated piperazine (PZH(+)), piperazine carbamate (PZCOO(-)) and MDEA were obtained by QM calculations. The results of our simulations emphasize the importance of piperazine and piperazine carbamate in accelerating the absorption process. For the first time, we have shown the undesirable trapping of CH(4) by the amine solution and revealed that amine groups are mainly responsible for both absorption of CO(2) and the undesired trapping of CH(4).  相似文献   

20.
The continuum theory of Hubbard-Onsager predicts for the friction coefficients the following behavior: >0 and /P<0. In contrast to Hubbard-Onsager theory, experimental observations on Cs+ ion in water show that at low temperatures <0 and /P>0. To explain the observed behavior of Nakahara et al. proposed the passage through cavities (PTC) mechanism. We performed a molecular dynamics computer simulation to determine if the PTC mechanism is responsible for the observed behavior of . No passage through cavities was observed. Molecular dynamics computer simulations were performed on Cs+ ion in water at temperature of 268 K and densities of 1.00 and 1.083 g-cm–3. Our results indicate that the observed behavior of for Cs+ ion is related to the difference in the reorientation times of water molecules in the solvation shell and in the bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号