首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A solid polymer electrolyte (SPE) composites consisting blend of poly(ethylene oxide) (PEO) and poly(ethylene glycol) (PEG) as the polymer host with LiCF3SO3 as a Li+ cation salt and TiO2 nanoparticle which acts as a filler were prepared using solution-casting technique. The SPE films were characterized by X-ray diffraction and Fourier transform infrared analysis to ensure complexation of the polymer composites. Frequency-dependent impedance spectroscopy observation was used to determine ionic conductivity and dielectric parameters. Ionic conductivity was found to vary with increasing salt and filler particle concentrations in the polymer blend complexes. The optimum ambient temperature conductivity achieved was 2.66?×?10?4?S?cm?1 for PEO (65 %), PEG (15 %), LiCF3SO3 (15 %), ethylene carbonate (5 %), and TiO2 (3 %) using weight percentage. The dielectric relaxation time obtained from a loss tangent plot is fairly consistent with the conductivity studies. Both Arrhenius and VTF behaviors of all the composites confirm that the conductivity mechanism of the solid polymer electrolyte is thermally activated.  相似文献   

2.
Thin films of blend polymer electrolytes comprising poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) complexed with ammonium thiocyanate (NH4SCN) salt in different compositions have been prepared by solution casting technique using distilled water as solvent. The prepared films have been investigated by different experimental techniques. The complexation of these films has been studied by FTIR spectroscopy. The increase in amorphousness of the films with increase in NH4SCN content has been confirmed by XRD analysis. The addition of ammonium thiocyanate salt to PVA-PVP polymer blend shows a shift in Tg of the blend. The effect of salt concentration and temperature on the ionic conductivity of the polymer blend films has been analyzed using AC impedance spectroscopy. The maximum conductivity of 6.85 × 10?4 S cm?1 at room temperature has been observed for the blend with 50 mol% PVA-50 mol% PVP complexed with 40 mol% NH4SCN. The activation energy has been found to be minimum (0.24 eV) for this sample. Wagner’s polarization technique shows that the charge transport in these blend films is predominantly due to ions. Using the highest conductivity blend polymer electrolyte, a proton battery has been fabricated and its discharge characteristics have been studied.  相似文献   

3.
S. A. Hashmi  H. M. Updahyaya 《Ionics》2002,8(3-4):272-277
Redox supercapacitors using electrochemically synthesised MnO2-polypyrrole composite electrodes have been fabricated with different electrolytes, namely polymer electrolyte film (polyvinyl alcohol, PVA-H3PO4 aqueous blend), aprotic liquid electrolyte (LiClO4-propylene carbonate, PC) and polymeric gel electrolyte [poly methyl methacrylate, (PMMA)-Ethylene carbonate (EC)-Propylene carbonate (PC)-NaClO4]. The capacitors have been characterised using galvanostatic charge-discharge methods. The cell with aqueous PVA-H3PO4 shows non-capacitive behaviour owing to some reversible chemical reaction of MnO2 with water while the MnO2-polypyrrole composite is found to be a suitable electrode material for redox supercapacitors with aprotic (non-aqueous) electrolytes. The solid state supercapacitor based on MnO2-polypyrrole composite electrodes with gel electrolyte gives stable values of capacitance of 10.0–18.0 mF cm−2 for different discharge current densities.  相似文献   

4.
Hybrid solid polymer electrolyte films comprising of poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), LiClO4, and propylene carbonate are prepared by solution casting technique by varying the salt concentration. In this study, PVAc/PMMA polymer blend ratio is fixed as 25:75 on the basis of conductivity and mechanical stability of the film. X-ray diffraction, Fourier transform infrared impedance, thermogravimetry/differential thermal analysis and scanning electron microscopy studies are carried out for the polymer electrolytes. The maximum ionic conductivity is found to be 4.511 × 10−4 S cm−1 at 303 K for the plasticized polymer electrolyte with 8 wt.% of LiClO4. The ionic conductivity is found to decrease with an increase of LiClO4 concentration.  相似文献   

5.
The proton conducting solid-state polymer electrolyte comprising blend of poly(vinyl alcohol) (PVA) and poly(N-vinylimidazole) (PVIM), ammonium tetrafluoroborate (NH4BF4) as salt, and polyethylene glycol (PEG) (molecular weight 300 and 600) as plasticizer is prepared at various compositions by solution cast technique. The prepared films are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy analysis. The conductivity–temperature plots are found to follow an Arrhenius nature. The conductivity of solid polymer electrolytes is found to depend on salt and plasticizer content and also on the dielectric constant value and molecular weight of the plasticizer. Maximum ionic conductivity values of 2.20?×?10?4 and 1.28?×?10?4?S?cm?1 at 30 °C are obtained for the system (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300 and (PVA–PVIM)?+?20 wt.% NH4BF4?+?150 wt.% PEG300, respectively. The blended polymer, complexed with salt and plasticizer, is shown to be a predominantly ionic conductor. The proton transport in the system may be expected to follow Grotthuss-type mechanism.  相似文献   

6.
Lithium ion-conducting membranes with poly(ethylene oxide) (PEO)/poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN)/lithium perchlorate (LiClO4) were prepared by solution casting method. Different plasticizers ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (gBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), and dibutyl phthalate (DBP) were complexed with the fixed ratio of PEO/PVdC-co-AN/LiClO4. The preparation and physical and electrochemical properties of the gel polymer electrolytes have been briefly elucidated in this paper. The maximum ionic conductivity value computed from the ac impedance spectroscopy is found to be 3?×?10?4 S cm?1 for the EC-based system. From DBP-based system down to EC-based system, a decrease of crystallinity and an increase of amorphousity are depicted by X-ray diffraction technique, the decrease of band gap energy is picturized through UV–visible analysis, the decrease of glass transition temperature is perceived from differential scanning calorimetry plots, and the reduction of photoluminescence intensity is described through photoluminescence spectroscopy study at an excitation wavelength of 280 nm. Atomic force microscopic images of EC-based polymer electrolyte film show the escalation of micropores. Fourier transform infrared spectroscopy study supports the complex formation and the interaction between the polymers, salt, and plasticizer. The maximum thermal stability is obtained from thermogravimetry/differential thermal analysis, which is found to be 222 °C for the sample complexed with EC. The cyclic voltagram of the sample having a maximum ionic conductivity shows a small redox current at the anode, and cathode and the chemical stability is confirmed by linear sweep voltammetry.  相似文献   

7.
Dextran-chitosan blend added with ammonium thiocyanate (NH4SCN)-based solid polymer electrolytes are prepared by solution cast method. The interaction between the components of the electrolyte is verified by Fourier transform infrared (FTIR) analysis. The blend of 40 wt% dextran-60 wt% chitosan is found to be the most amorphous ratio. The room temperature conductivity of undoped 40 wt% dextran-60 wt% chitosan blend film is identified to be (3.84?±?0.97)?×?10?10 S cm?1. The inclusion of 40 wt.% NH4SCN to the polymer blend has optimized the room temperature conductivity up (1.28?±?0.43)?×?10?4 S cm?1. Result from X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis shows that the electrolyte with the highest conductivity value has the lowest degree of crystallinity (χ c) and the glass transition temperature (T g), respectively. Temperature-dependence of conductivity follows Arrhenius theory. From transport analysis, the conductivity is noticed to be influenced by the mobility (μ) and number density (n) of ions. Conductivity trend is further verified by field emission scanning electron microscopy (FESEM) and dielectric results.  相似文献   

8.
A solid polymer blend electrolyte is prepared using poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) polymers with different molecular weight percentage (wt%) of ammonium thiocyanate (NH4SCN) by solution casting technique with tetrahydrofuran (THF) as a solvent. The structural, morphological, vibrational, thermal and electrical properties of the prepared polymer blend electrolytes have been studied. The incorporation of NH4SCN into the polymeric matrix causes decrease in the degree of crystallinity of the samples. The complex formation between the polymer and salt has been confirmed by FTIR technique. The increase in T g with increase in salt concentration has been investigated. The maximum conductivity of 3.684?×?10?3 S cm?1 has been observed for the composition of 70PVAc/30PMMA/30 wt% of NH4SCN at 303 K. This value of ionic conductivity is five orders of magnitude greater than that of 70PVAc/30PMMA polymer membrane. Dielectric and transport studies have been done. The highest conducting polymer electrolyte is used to fabricate proton battery with the configuration Zn/ZnSO4·7H2O (anode) ||polymer electrolyte||PbO2/V2O5 (cathode). The open circuit voltage of the fabricated battery is 1.83 V, and its performance has been studied.  相似文献   

9.
Solid polymer electrolytes based on potato starch (PS) and graphene oxide (GO) have been developed in this study. Blending GO with PS has improved the ionic conductivity and mechanical properties of the electrolytes. In this work, series of polymer blend consisting of PS and GO as co-host polymer were prepared using solution cast method. The most amorphous PS-GO blend was obtained using 80 wt% of PS and 20 wt% of GO as recorded by X-ray diffraction (XRD). Incorporation of 40 wt% lithium trifluoromethanesulfonate (LiCF3SO3) into the PS-GO blend increases the conductivity to (1.48 ± 0.35) × 10?5 S cm?1. Further enhancement of conductivity was made using 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). The highest conductivity at room temperature is obtained for the electrolyte containing 30 wt% of [Bmim][Cl] with conductivity value of (4.8?0 ± 0.69) × 10?4 S cm?1. Analysis of the Fourier transform infrared spectroscopy (FTIR) spectra confirmed the interaction between LiCF3SO3, [Bmim][Cl], and PS-GO blend. The variation of the dielectric constant and modulus studies versus frequency indicates that system of PS-GO-LiCF3SO3-[Bmim][Cl] obeys non-Debye behavior.  相似文献   

10.
The polyvinylidene difluoride-co-hexafluoropropylene (PVdF-HFP) nanocomposite solid polymer electrolyte films were developed by solution-casting method. PVdF-HFP as a polymer host, lithium perchlorate (LiClO4) as a salt for lithium ion, and ZnO nanoparticles as fillers were used to form the nanocomposite solid polymer electrolyte films. All the prepared samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry, and scanning electron microscopy. The XRD patterns of the pure and nanocomposite solid polymer electrolyte samples indicate the formation of amorphous phase with 17.5 wt.% of lithium salt and ZnO fillers up to 3 wt.%. The total conductivity and lithium ion transference number were studied at room temperature by using impedance spectroscopy and Wagner’s polarization methods. The highest conductivity at room temperature for solid polymer electrolyte and nanocomposite solid polymer electrolyte are found to be 3.208?×?10?4 and 1.043?×?10?3 S/cm, respectively. Similarly, the lithium ion transference number is evaluated for the optimized solid polymer electrolyte and nanocomposite solid polymer electrolyte films with 3 wt.% of ZnO fillers. And it is found that ionic transference number could be enhanced from 92 to 95 % with the addition of nanosized ZnO fillers to the solid polymer electrolyte.  相似文献   

11.
Polymer blended films of polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):lithium perchlorate (LiClO4) embedded with silver (Ag) nanofiller in different concentrations have been synthesized by a solution casting method. The semi-crystalline nature of these polymer films has been confirmed from their X-ray diffraction (XRD) profiles. Fourier transform infrared spectroscopy (FTIR) and Raman analysis confirmed the complex formation of the polymer with dopant ions. Dispersed Ag nanofiller size evaluation study has been done using transmission electron microscopy (TEM) analysis. It was observed that the conductivity increases when increasing the Ag nanofiller concentration. On the addition of Ag nanofiller to the polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14?×?10?5 S cm?1 at the optimized concentration of 4 wt% Ag nanofiller-embedded (45 wt%) polyethylene oxide (PEO)?+?(45 wt%) polyvinyl pyrrolidone (PVP):(10 wt%) Li+ polymer electrolyte nanocomposite at room temperature. Polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ +Ag nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. This is ascribed to the presence of flexible matrix and high ionic conductivity. The applicability of the present 4 wt% Ag nanofiller-dispersed polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ polymer electrolyte system could be suggested as a potential candidate for solid-state battery applications. Dielectric constants and dielectric loss behaviours have been studied.  相似文献   

12.
Proton-conducting polymer electrolytes based on biopolymer, agar-agar as the polymer host, ammonium bromide (NH4Br) as the salt and ethylene carbonate (EC) as the plasticizer have been prepared by solution casting technique with dimethylformamide as solvent. Addition of NH4Br and EC with the biopolymer resulted in an increase in the ionic conductivity of polymer electrolyte. EC was added to increase the degree of salt dissociation and also ionic mobility. The highest ionic conductivity achieved at room temperature was for 50 wt% agar/50 wt% NH4Br/0.3% EC with the conductivity 3.73?×?10?4 S cm?1. The conductivity of the polymer electrolyte increases with the increase in amount of plasticizer. The frequency-dependent conductivity, dielectric permittivity (ε′) and modulus (M′) studies were carried out.  相似文献   

13.
A new class of polymer gel electrolyte (PGE) was synthesized using acrylamide as host polymer and LiClO4 as dopant. The polymer gel was subjected to electrochemical AC impedance analysis and thermal analysis. The polymer has conductivity in the order of 10−3 S cm−1 at ambient temperature. Thermogravimetric analysis (TGA) revealed the effect of dopant on host polymer matrix. A supercapacitor was fabricated using acrylamide based polymer gel electrolyte with activated carbon as electrode material and it was subjected to various electrochemical techniques like cyclic voltammetry, electrochemical AC impedance analysis and galvanostatic charge–discharge tests at various current densities. From cyclic voltammetry a specific capacitance of 28 F/g was obtained at a scan rate of 10 mV/s. The capacitor had good self-discharge behavior and good cycle life of more than 10,000 cycles. The coulombic efficiency was more than 95%. These results indicate that this acrylamide-based polymer gel electrolyte doped with LiClO4 is a potential electrolyte for electric double-layer capacitors (EDLCs).  相似文献   

14.
The influence of tetrabutylammonium iodide on the polyvinylidene fluoride-poly(methyl methacrylate)-ethylene carbonate (PVDF-PMMA-EC)-I2 polymer blend electrolytes was investigated and optimized for use in a dye-sensitized solar cell. The different weight ratios (50, 60, 70, and 80 %) of tetrabutylammonium iodide (TBAI)-added PVDF-PMMA-EC-I2 polymer electrolytes were prepared. The prepared solid polymer blend electrolytes were characterized by using various techniques such as Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). The FT-IR spectra revealed the interaction among all composition of polymer electrolytes. The influence of TBAI salt on the ionic conductivity of polymer electrolytes was studied using electrochemical impedance spectroscopy. The polymer electrolyte containing 60 % of TBAI in PVDF-PMMA-EC-I2 showed the highest room temperature conductivity of 5.10?×?10?3 S cm?1. The fabricated DSSC using PVDF-PMMA-EC-I2 polymer electrolytes with 60 % of TBAI showed the best performance with a short-circuit current density of 8.0 mA cm?2, open-circuit voltage of 0.66 V, fill factor of 0.65, and the overall power conversion efficiency of 3.45 % under an illumination of 100 mW cm?2. Hence, the weight content of organic iodide salt in polymer electrolytes influences the overall performance of dye-sensitized solar cells.  相似文献   

15.
Proton-conducting solid polymer blend electrolytes based on methylcellulose-polyvinyl alcohol:ammonium nitrate (MC-PVA:NH4NO3) were prepared by the solution cast technique. The structural and electrical properties of the samples were examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and electrical impedance (EI) spectroscopy. The shifting and change in the intensity of FTIR bands of the electrolyte samples confirm the complex formation between the MC-PVA polymer blend and the NH4NO3 added salt. The observed broadening in the XRD pattern of the doped samples reveals the increase of the amorphous fraction of polymer electrolyte samples. The increase in electrical conductivity of polymer electrolyte samples with increasing salt concentration attributed to the formation of charge-transfer complexes, and to increase in the amorphous domains. A maximum ionic conductivity of about 7.39 × 10?5 S cm?1 was achieved at room temperature for the sample incorporating 20 wt% of NH4NO3. The DC conductivity of the present polymer system exhibits Arrhenius-type dependence with temperature. The decrease in the values of activation energies with increasing salt concentration indicates the ease mobility of ions. The decrease in dielectric constant with increasing frequency was observed at all temperatures. Optical properties such as absorption edge, optical band gap, and tail of localized state were estimated for polymer blend and their electrolyte films. It was found that the optical band gap values shifted towards lower photon energy from 6.06 to 4.75 eV by altering the NH4NO3 salt content.  相似文献   

16.
Poly(vinyl butyral) (PVB) is of particular interest because of its low cost, extremely wide temperature work range (? 20 to 120 °C), and efficient chemical stability. In this study, a gel polymer electrolyte (GPE) containing Li+ ions was fabricated by using dimethylacetylamine (DMA), lithium perchlorate (LiClO4), and PVB. The experimental results indicated that a highly transparent GPE with a high ionic conductivity (σ) could be obtained by mixing glue (DMA with a PVB content of 10 wt%) with a LiClO4 content of 6 wt%. It was found that the ionic conductivity (σ) of the GPE depended on the LiClO4 content, and the GPE with a LiClO4 content of 6 wt% exhibited a maximum σ of 7.73 mS cm?1, a viscosity coefficient of 3360 mPa s, and a transmittance greater than 89% (visible region) at room temperature. Furthermore, PVB improved the electrolyte solution leakage, and the LiClO4 was used as an ion supply source for the high σ of the GPE.  相似文献   

17.
Solid polymer electrolyte with high ionic conductivity was prepared by adding an ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTF) to the nitrile butadiene rubber/epoxy resin/LiClO4 (NBR-EP-Li) system. The addition of BMIMOTF into NBR-EP-Li composites, with the LiClO4/BMIMOTF mole ratio of 1/0.54, improved the conductivity by 6–17 times depending on the amount of LiClO4. Infrared difference spectroscopy and nuclear magnetic resonance spectroscopy analysis confirmed the interaction between LiClO4 and BMIMOTF, which caused a decreasing interaction between ClO4 and Li+. X-ray diffraction and field emission scanning electron microscopy analysis indicated BMIMOTF improved the dissolution of LiClO4 and contributed to the increase of conductivity by an increase of free Li+.  相似文献   

18.
Nanocomposite polymer electrolyte (NCPE) films based on polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and nanosized ferroelectric ceramic fillers such as BaTiO3, SrTiO3 have been prepared using solution cast technique. The films showed very good mechanical stability when exposed to ambient atmospheres for prolonged periods. Lithium ion transport studies revealed that the conductivity is predominantly ionic. The effect of electric field on ionic conductivity of NCPE films was investigated. One order enhancement in conductivity due to the field was observed at 323 K. NCPE films exhibited conductivity of 3.46?×?10?5 Scm?1 at 323 K. NCPE films were characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) technique. The DSC and XRD studies revealed reduced crystallinity which confirmed the higher amorphous phase and hence the improved ionic conductivity.  相似文献   

19.
Solid polymer electrolytes (SPEs) based on poly (vinyl chloride)/poly (ethyl methacrylate) [PVC/PEMA] blend complexed with zinc triflate [Zn(CF3SO3)2] salt have been prepared using solution casting technique. Thin film samples containing various blend ratios of PVC/PEMA with fixed composition of salt have been examined by means of complex impedance analysis, and as a consequence, the typical composition corresponding to PVC (30 wt%)/PEMA (70 wt%) has been identified as the optimized blend exhibiting the highest room temperature ionic conductivity of 10?8 Scm?1. The ionic conductivity of the optimized blend was further enhanced from 10?8 to 10?6 Scm?1 by adding the chosen salt in different weight percentages at 301 K. The occurrence of complexation of the polymer blend and an evidence of interaction of cations, namely Zn2+ ions with the polymer blend, have been confirmed by Attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy measurement studies. The efficacy of ion-polymer interactions was estimated by means of an evaluation of transport number data pertaining to Zn2+ ions which was found to be 0.56. The apparent changes resulting in the structural properties of these polymer electrolytes possessing a honeycomb-like microporous structure were identified using X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies. Such promising features of the present polymer blend electrolyte system appear to suggest possible fabrication of new rechargeable zinc batteries involving improved device characteristics.  相似文献   

20.
Solid polymer electrolytes based on methyl cellulose (MC)-potato starch (PS) blend doped with ammonium nitrate (NH4NO3) are prepared by solution cast technique. The interaction between the electrolyte’s materials is proven by Fourier transform infrared (FTIR) analysis. The thermal stability of the electrolytes is obtained from thermogravimetric analysis (TGA). The room temperature conductivity of undoped 60 wt.% MC-40 wt.% PS blend film is identified to be (1.04 ± 0.19) × 10?11 S cm?1. The addition of 30 wt.% NH4NO3 to the polymer blend has optimized the room temperature conductivity to (4.37 ± 0.16) × 10?5 S cm?1. Conductivity trend is verified by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dielectric analysis. Temperature-dependence of conductivity obeys Arrhenius rule. Conductivity is found to be influenced by the number density (n) and mobility (μ) of ions. From transference number measurements (TNM), ions are found to be the dominant charge carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号