首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在二级轻气炮上对新设计的一种钨合金/黄铜的有间隙的复合结构靶板开展了抗侵彻实验研究。靶板材料为多层结构,层与层之间有10mm到50mm的间隙。为了得到最优的结构设计参数,在二级轻气炮上对这种结构的靶板进行了弹丸质量为3g~20g、弹丸速度为2000m/s~4100m/s的抗侵彻实验研究。研究结果表明,高密度、高硬度的93W合金板和H62黄铜是防护结构最佳选材之一;用它们的两组合设计的四层复合结构靶能抵抗质量约20g,速度约2000m/s的钢质破片的侵彻。这一研究结果为选择合理的防护结构提供实验支持。  相似文献   

2.
多级串联式超高速飞片装置实验研究   总被引:6,自引:1,他引:5  
叙述了有关多级串联飞片速度的实验研究。首先做了预备实验 ,测得了2 0 0mm炸药驱动钢飞片撞击靶板时的平面范围。设计了测量多级飞片速度的实验装置 ,采用电探针方法 ,在一发实验中同时测量了三级飞片的速度。实验测得 :初级飞片速度为 4 87km/s,1mm厚次级钢飞片速度达到 7km/s ,0 .2mm厚末级钼飞片速度接近 10km/s。  相似文献   

3.
采用理论计算、数值模拟与实验相结合的方法,研究了直径5.7 mm、长6.7 mm的圆柱形破片以800~1 200 m/s的速度撞击2~10 mm厚铝靶时的跳飞特性。建立了破片斜侵彻有限厚靶板的跳飞临界角理论模型,计算得到破片跳飞临界角与破片入射速度、靶板厚度的关系,并与模拟值、实验值对比,三者吻合较好。结果表明:破片撞靶速度相同时,随着靶板厚度的增加,破片的跳飞临界角减小。靶板厚度相同的情况下,在所计算的速度范围内,入射速度越大,破片跳飞临界角越大。速度在800~1 200 m/s时,破片撞击2 mm厚靶板的跳飞临界角为81°~81.25°;撞击4 mm厚靶板的跳飞临界角为72.5°~76.25°。  相似文献   

4.
较全面地开展了电炮加载技术的实验研究,解决了低电感开关、电容器和外回路设计中的关键技术,使整个回路短路电感为38nH,接近电容器的内电感30nH,最大放电电流接近兆安。优化设计后的装置在储能仅为14.4kJ的情况下,在25 kV充电电压下,在1.2μs内可将直径10mm,厚度0.1 mm的Mylar膜飞片加速到10 km/s,通过光纤测试发现飞片在飞行3mm后平面度优于24ns。根据测试的数据进一步改进了桥箔板和炮膛的设计,使得在相同加载条件下,飞片的加速历史几乎完全重合,其弹道稳定性优于气炮等加载装置。同时解决了电炮加载下的关键诊断测试技术。本文工作为进一步开展高应变率加载下材料动力学响应和炸药冲击感度研究提供了新的有效的加载手段,同时也为研究更高储能的电炮实验装置奠定了基础。  相似文献   

5.
罗斌强  张旭平  郝龙  莫建军  王桂吉  宋振飞  谭福利  王翔  赵剑衡 《爆炸与冲击》2021,41(2):021401-1-021401-11
介绍了毫克至克量级弹丸7 km/s以上超高速发射技术的国内外研究进展,并对各发射装置的工作原理和技术要素进行了简要阐述.基于电磁驱动准等熵加载,美国ZR装置驱动25 mm×13mm×1.0mm铝飞片至46km/s速度,国内CQ系列磁驱动加载装置实现了 10mmx6mmx0.33mm铝飞片18 km/s的发射.借助于金属箔电爆炸产生高压气体驱动,美国利弗莫尔实验室100kV电炮装置驱动9.5mm×9.5 mm×0.3 mm的Kapton膜至18 km/s,国内流体物理研究所98 kJ和200 kJ电炮装置分别驱动?10 mmx0.2 mm Mylar飞片和?21 mm×0.5 mm Mylar飞片到10 km/s.基于阻抗梯度飞片技术,采用汇聚型和非汇聚型结构三级轻气炮,实现了厘米量级铝飞片和TC4钛飞片12~15 km/s速度发射.这些超高速驱动技术的发展,为空间碎片防护研究提供了坚实的技术支持.  相似文献   

6.
8km/s激光驱动飞片发射技术实验研究   总被引:2,自引:0,他引:2  
实验研究了激光驱动飞片技术中激光能量剖面和飞片靶金属膜层的力学特性对飞片的速度和完整性的影响,认为激光能量剖面整体呈“平顶型”的光束是发射高质量飞片的基础,同时飞片靶的膜基附着力、金属膜层的强度和韧性三者之间应保持良好的匹配才能得到完整的飞片。制备了基底/Cr/Al复合结构飞片靶,利用波长1 064nm、脉宽15ns的激光,将直径1mm、厚度3μm的铝飞片稳定驱动至8km/s。  相似文献   

7.
研制了具有较高驱动能力的100kV/60kJ高速电炮装置。性能实验结果表明,飞片的完整性和飞行平面度均较好,其中平面度优于42ns。该装置可将直径18mm、厚0.15mm的Mylar膜飞片(约53mg)加速到8.1km/s,将直径12mm、厚0.2mm的Mylar膜飞片(约32mg)加速到9.6km/s,表明该装置具有较高的加载能力。本项工作可为开展高应变率加载下的材料动力学响应及其他相关研究提供有效的加载手段。  相似文献   

8.
提出使用炸药网络爆轰技术,设计了一种新型的低速飞片击靶加载装置,结合数值模拟和实验测 量,对驱动飞片的速度、平面性及装置结构参数进行了系统分析。实验结果表明,无氧铜飞片可以使直径 100mm、厚度3mm 的飞片在飞行距离2mm 内达到稳定的飞行状态,击靶速度在200~350m/s范围内连 续可调,飞片击靶平面范围大、速度均匀、平面性好,为实现低冲击应力的一维应变加载提供了参考。  相似文献   

9.
为了在气炮上实现应变率为105~106 s-1的复杂加载技术研究,采用自行研制的拉格朗日程序MLEP(multi-material Lagrangian elastic-plastic)对Al-Cu-W材料体系的阻抗梯度飞片复杂加载不锈钢靶板进行数值模拟,计算设计并分析了阻抗梯度飞片的厚度和密度分布指数对靶板压力、速度和应变率峰值等波形的影响。结果表明:密度指数分布越大,加载时间越短,加载后期的压力、速度和应变率峰值曲线更陡峭;同时, 为了避免靶板/LiF窗口界面反射的稀疏波早于阻抗梯度飞片后界面反射的稀疏波达到碰撞面位置,计算设计中还考虑了飞片厚度的影响。此外,对基于理论设计的阻抗梯度飞片进行了动态考核实验,实验结果基本反映了预期的设计,为材料强度的测量奠定了基础。  相似文献   

10.
基于变截面杆的波传播特性,设计了一种"针床型"广义波阻抗梯度飞片,即在圆薄片基座上密排叠加许多犹如针尖的小正四棱锥。采用LS-DYNA软件中SPH算法对广义波阻抗梯度飞片高速击靶过程进行了数值计算,结果显示:在飞片击靶过程中,每一个小正四棱锥台可以看作"点"式加载脉冲源,产生一系列具有缓慢上升前沿的近似球面波,球面波相互叠加得到具有缓慢上升前沿的平面加载波形,从而实现对靶板准等熵压缩加载。在数值计算中详细讨论了飞片击靶速度、飞片几何特征参数对准等熵压缩加载特性的影响规律,为广义波阻抗梯度飞片的设计与应用提供指导。基于数值计算结果,采用激光选区烧结金属增材制造技术,制备了一种广义阻抗梯度飞片样品,在一级气炮上进行击靶实验,实测了靶板自由面速度时程曲线,波形呈现了准等熵压缩加载特性,并与计算结果进行了对比,两者基本一致,从而验证了广义波阻抗梯度飞片结构设计的可行性以及数值计算结果的可靠性。  相似文献   

11.
测试爆炸箔起爆器的飞片速度   总被引:8,自引:2,他引:8  
用双灵敏度VISAR测试爆炸箔起爆器的飞片速度历史。通过对飞片表面镀膜处理,消除了爆炸箔爆炸自发光产生的干扰,增加了飞片的反射率。在爆炸箔宽360 m,厚8.4 m,加速膛直径为1.2 mm,飞片厚0.12 mm,放电回路充电电压为4.5 kV,放电周期为750 ns的条件下,飞片最大速度为4.1 km/s,飞片加速时间约为150 ns,飞片达到最大速度的飞行距离约为0.3 mm。  相似文献   

12.
钢纤维混凝土抗侵彻与贯穿特性的实验研究   总被引:3,自引:0,他引:3  
为考察素混凝土及钢纤维混凝土(钢纤维为平直型与端钩型,体积分数0.01~0.05)抗侵彻贯穿特性,采用12.7 mm弹道炮-测速靶系统开展了初速297~848 m/s的弹道冲击实验,获得了弹丸着靶速度及对应的最大侵彻深度、弹坑直径、靶体(板)破坏形态等实验参数,并利用高速摄影系统记录了靶体(板)的动态破坏过程。实验结果的对比表明,靶板的抗侵彻贯穿性能和破坏模式与钢纤维类型及含量密切相关。当钢纤维体积分数为0.05时,端钩型钢纤维混凝土的侵彻深度与相同强度等级素混凝土相比降低约52%,且贯穿破坏后靶板碎片的数量及飞散角度大幅降低,显示了高含量异型钢纤维混凝土在抗侵彻贯穿方面的适用性。  相似文献   

13.
飞片雷管中飞片直径对飞片速度的影响   总被引:3,自引:0,他引:3  
在飞片雷管和电炮引爆炸药的实验研究中,飞片速度是一个非常重要的参量。只有知道飞片对靶炸药的撞击速度,才有可能确定炸药所受到的刺激的大小。但是,由于影响飞片速度的因素很多,难以从数学上推导出精确描述飞片速度的表达式。  相似文献   

14.
为了准确掌握靶板层裂过程和规律,基于波动力学和基本假设,建立了爆炸成型弹丸(explosively formed projectile,EFP)垂直侵彻有限厚靶板时层裂的力学模型,得到了层裂点的表达式。研究结果表明:EFP速度为1 800 m/s、靶板厚度从35 mm增大到60 mm时,靶板背面弯月形层裂区厚度不断增大,弯月形层裂区长度不断减小;靶板厚度保持40 mm不变、EFP速度从1 600 m/s增大到1 900 m/s时,靶板背面层裂区厚度不断减小,弯月形层裂区长度不断增大。开展了EFP侵彻40 mm厚装甲钢靶板的实验,将实验结果和理论计算结果进行对比分析,两者吻合较好。  相似文献   

15.
电炮驱动薄膜飞片的运动速度   总被引:4,自引:2,他引:2  
用双灵敏度激光干涉测速技术测量了充电电压为18 kV的电炮加载下薄膜飞片自由面的速度历史。介绍了相关的实验装置及测量方法,给出了实验结果,并讨论了影响测速的一些关键技术。整个测速过程约为1.6 s,最终速度为6.7 km/s。  相似文献   

16.
介绍了以飞片平面撞击标定某新型锰铜压阻计的过程及方法. 标定在Phi 130 mm轻气炮上进行, 采用有机玻璃, Cu和W 3种材料为飞片和靶板材料, 实现不同速度下的 同种材料平面正撞击, 获得0.66$\sim$25.4\,GPa范围的入射压力, 并利用几何修 正和$D$-$u$关系修正两种方法对结果进行了修正, 给出了标定结果以及拟合曲线.  相似文献   

17.
利用铜靶验证法研究了加速腔材料、结构以及桥箔尺寸与加速腔尺寸的匹配关系等因素对电炮驱动飞片完整性的影响。实验结果表明,对于每秒数公里的高速下,加速腔材料、预制刃口与否对飞片的完整性影响不大,当加速腔尺寸稍小于桥箔尺寸时能够获得非常完整且呈圆形的飞片。光纤探针测量结果显示,此条件下,飞片具有较好的平面度,从该角度讲,电炮是一种较好的平面波发生器。  相似文献   

18.
宗泽  王刚  方嘉铖  林茜  王永刚 《爆炸与冲击》2021,41(4):041405-1-041405-9
为了实现斜波加载,设计了一种“钉床型”广义波阻抗梯度飞片,即在基座上密排叠加许多小圆锥,简称“钉床型”飞片。该飞片采用激光选区熔化金属增材制造技术进行制备。利用一级轻气炮加载装置和全光纤激光位移干涉测试系统,开展不同工况下“钉床型”飞片高速击靶压缩实验和层裂实验,重点讨论小圆锥高度和撞击速度对斜波压缩加载波形的影响规律,以及斜波加载对不锈钢靶板层裂特性的影响。实验结果显示:(1)“钉床型”飞片对靶板产生的压缩是逐步的,从自由面速度剖面上观察到压缩波上升前沿时间被显著延长,形成了斜波波阵面,明显不同于冲击压缩的陡峭波阵面;(2)在飞片击靶速度近似恒定条件下,斜波波阵面的上升沿时间、平台速度峰值都明显依赖于“钉床型”飞片上的小圆锥高度,随着小圆锥高度增大,上升沿时间呈线性增大,而平台速度峰值呈线性减小;(3)在“钉床型”飞片的几何尺寸保持不变的条件下,斜波波阵面的上升沿时间随着飞片击靶速度的增大而线性减小,平台速度峰值则线性增大;(4)与冲击加载相比,“钉床型”飞片产生的斜波加载不会对材料的层裂强度产生明显影响,但对材料内部损伤演化速率有一定的影响。  相似文献   

19.
考虑爆炸成型弹丸(explosively-formed projectile,EFP)变截面的特性,基于流体力学Bernoulli方程和绝热剪切理论,改进了EFP垂直侵彻装甲钢板靶后破片质量模型,结合已有的试验数据和数值仿真方法检验了改进后模型的准确性。在此基础上,分析了靶板厚度和EFP着靶速度对靶板和EFP产生的靶后破片质量的影响规律。结果表明:相比于改进前的模型,改进后的模型能够更准确地解释靶板和EFP产生的靶后破片质量随靶板厚度和EFP着靶速度的变化规律;当EFP着靶速度为1 650 m/s时,随着靶板厚度从30 mm增大到70 mm,EFP变截面的特性对靶板和EFP产生靶后破片质量的影响不断增强;当靶板厚度为40 mm时,随着EFP着靶速度从1 650 m/s升高到1 860 m/s,EFP变截面的特性对靶板和EFP产生靶后破片质量的影响不断减弱。  相似文献   

20.
飞机加强蒙皮在12.7 mm弹丸撞击下的变形与破坏   总被引:18,自引:0,他引:18  
为了研究飞机蒙皮在12.7 mm标准机枪弹丸射击下的损伤,对3 mm厚LY-12 CZ材料的单蒙皮及其加筋板进行了模拟弹击试验。通过试验研究,建立了一个由高速气炮、弹体与弹托分离机构、连续位移激光测速装置和弹丸回收装置组成的系统并被有效地用于弹丸正撞击试验。通过对四边固支的3 mm厚蒙皮用12.7 mm直径弹丸进行速度约60~300 m/s的正撞击试验,结果表明,靶板从微小损伤到完全击穿;弹击造成的变形区有效直径随弹丸速度的增大呈幂指数趋势下降;弹击引起的变形深度随弹丸撞击速度的增加呈直线下降;靶板上的应变随弹丸速度的增加逐渐降低。弹丸剩余速度随弹丸撞击速度的增加呈直线上升。最后利用DYNA3D程序对单蒙皮及其加筋板进行了弹击数值模拟,模拟结果与弹击试验结果较吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号