首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work investigates the preparation of promising biochar derived from date palm petioles powder (DPB) via a thermal treatment. DPB was characterized through various techniques to analyze the chemical (FTIR), morphological (SEM) and point of zero charges to investigate changes incorporated through the pyrolysis process.The adsorption of methyl orange (MO) onto the biochar was investigated using batch experiments according to different parameters which influence the adsorption process such as: initial dye concentration, equilibrium time, pH, and temperature. Isothermal and reuse studies of MO adsorption onto DPB were also investigated.Results of MO removal on DPB have demonstrated that the adsorption process was initial dye concentration-dependent, and equilibrium time was occurred in 60 min. The biochar presented high stability of MO adsorption capacity in a large domain of pH. Thermodynamic analysis of this process revealed that methyl orange adsorption was exothermic and spontaneous in nature.The experimental data were analyzed by pseudo-first-order, pseudo-second-order model, and the intraparticle-diffusion for kinetics and Langmuir, Freundlich, and Temkin models for isotherms.Kinetic adsorption followed the pseudo-second-order model and the intraparticle-diffusion within pores controlled the adsorption rate. The experimental data yielded good fits with in the following isotherms order: Langmuir > Temkin > Freundlich, The maximum adsorption capacity of MO on DPB was found 461 mg.g?1. The reusability study reveals the possibility of the reuse of DPB for three (03) cycles of adsorption–desorption, a slight decrease in the ability of methyl orange adsorption has noticed with the increase of the number of adsorption–desorption cycles : 81.03 %, 67.84 %, and 51.72 %, respectively. The found results of the present study show that the biochar derived from date palm petioles have the potential to be used as a promising adsorbent for the treatment of MO dye.  相似文献   

2.
The interaction of methylene blue (MB) dye with natural coal (collected from coal landfills of the Kosovo Energy Corporation) in aqueous solutions was studied using adsorption, kinetics, and thermodynamic data, and Monte Carlo (MC) calculations. In a batch procedure, the effects of contact duration, initial MB concentration, pH, and solution temperature on the adsorption process were examined. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) isotherms were used to examine the equilibrium adsorption data. The equilibrium data fit well to the Freundlich and Langmuir adsorption isotherm models; however, the Freundlich model suited the adsorption data to a slightly better extent than the Langmuir model. The kinetics experimental data was fitted using pseudo-first-order, first-order, pseudo-second-order, second-order, Elvoich equation, and diffusion models. The pseudo-second-order rate model manifested a superlative fit to the experimental data, while the adsorption of MB onto coal is regulated by both liquid film and intraparticle diffusions at the same time. Thermodynamic parameters, such as Gibbs free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were calculated. The adsorption of MB was confirmed to be spontaneous and endothermic. The theoretical results were in agreement with the experimental ones.  相似文献   

3.
The adsorption of methylene blue (MB) dye from aqueous solution onto a cashew nut shell (CNS) was investigated as a function of parameters such as solution pH, CNS dose, contact time, initial MB dye concentration and temperature. The CNS was shown to be effective for the quantitative removal of MB dye, and the equilibrium was reached in 60 min. The experimental data were analysed by two-parameter isotherms (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models) using nonlinear regression analysis. The characteristic parameters for each isotherm and the related correlation coefficients were determined. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, the sorption process was found to be spontaneous and exothermic. Pseudo-first-order, pseudo-second-order and Elovich kinetic models were used to analyze the adsorption process. The results of the kinetic study suggest that the adsorption of MB dye matches the pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorption process was found to be controlled by both surface and pore diffusion. Analysis of adsorption data using a Boyd kinetic plot confirmed that the external mass transfer is a rate determining step in the sorption process. A single-stage batch adsorber was designed for different CNS doses to effluent volume ratios using the Freundlich equation. The results indicated that the CNS could be used effectively to adsorb MB dye from aqueous solutions.  相似文献   

4.
In this paper, the modified magnetic chitosan resin containing diethylenetriamine functional groups (DETA-MCS) was used for the adsorption of uranium ions from aqueous solutions. The influence of experimental conditions such as contact time, pH value and initial uranium(VI) concentration was studied. The Langmuir, Freundlich, Sips and Dubinin–Radushkevich equations were used to check the fitting of adsorption data to the equilibrium isotherm. The best fit for U(VI) was obtained with the Sips model. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. The present results suggest that DETA-MCS is an adsorbent for the efficient removal of uranium(VI) from aqueous solution.  相似文献   

5.
The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Orange peel was collected from the fields of orange trees in the north of Iran and converted into a low-cost adsorbent. This paper deals with the removal of textile dyes from aqueous solutions by orange peel. Direct Red 23 (DR23) and Direct Red 80 (DR80) were used as model compounds. The adsorption capacity Q0 was 10.72 and 21.05 mg/g at initial pH 2. The effects of initial dye concentration (50, 75, 100, 125 mg/l), pH, mixing rate, contact time, and quantity of orange peel have been studied at 25 degrees C. The Langmuir and Freundlich models were used for this study. It was found that the experimental results show that the Langmuir equation fit better than the Freundlich equation. The results indicate that acidic pH supported the adsorption of both dyes on the adsorbent. Orange peel with concentrations of 8 and 4 g/l has shown adsorption efficiencies of about 92 and 91% for DR23 and DR80, respectively. Furthermore, adsorption kinetics of both dyes was studied and the rates of sorption were found to conform to pseudo-second-order kinetics with a good correlation (R > or = 0.998). Maximum desorption of 97.7% for DR23 and 93% for DR80 were achieved in aqueous solution at pH 2. Finally, the effect of adsorbent surface was analyzed by scanning electron microscope (SEM). SEM images showed reasonable agreement with adsorption measurements.  相似文献   

6.
Based on the abundance of seed-watermelon pulp (SWP) in Xinjiang, China, SWP was employed to prepare low-cost adsorbent toward the removal of methylene blue (MB). The effects of contact time at different initial concentration were studied. The widely used adsorption isotherm models including Langmuir, Freundlich, and Temkin isotherms were employed to depict the adsorption process. The Langmuir isotherm was best fitted to the experimental data. Batch kinetic studies showed that an equilibrium time of 300 minutes was needed for the adsorption. The adsorption properties can be well described by pseudo-second-order kinetic model and the MB uptake was not controlled by intraparticle diffusion mechanism.  相似文献   

7.
羧基化石墨烯对4种离子型染料的吸附脱色   总被引:1,自引:0,他引:1  
吕莎莎  危晶  江峰  王邃 《应用化学》2013,30(10):1215-1221
合成的羧基化石墨烯(G-COOH)用FT-IR进行表征,并对G-COOH用于水溶液中甲基紫、中性红、灿烂黄和茜素红4种离子型染料的吸附性能进行了研究。 考察了吸附剂用量、吸附时间、初始浓度以及溶液pH值等条件对吸附效果的影响。 同时,研究了甲基紫染料的脱附性能,结果表明,用NaOH/EtOH混合溶液洗脱甲基紫,洗脱率可达88.2%,洗脱后的G-COOH可再利用。 从热力学角度探讨得出,G-COOH对阳离子染料甲基紫和中性红的吸附行为能够较好的符合Langmuir等温吸附模型,而对阴离子染料灿烂黄和茜素红的吸附行为则能够较好的符合Freundlich等温吸附模型,计算的吸附参数表明,G-COOH对4种染料的吸附过程容易进行。 动力学研究表明,G-COOH对4种离子型染料的吸附行为均能较好的符合准二级吸附模型。 该实验研究表明,在处理染料废水时,G-COOH为相当优异的吸附剂。  相似文献   

8.
The feasibility of using granulated activated carbon for adsorption removal of copper from aqueous solution was studied. The influence of pH, amount of the adsorbent, contact time, and copper concentration on adsorption of copper was investigated. The single-component equilibrium data on copper adsorption were analyzed using the Langmuir, Freundlich, Redlich—Peterson, Temkin, and Toth adsorption isotherms. The adsorption process was followed by two simplified kinetic models including pseudo-first- and pseudo-second-order equations. Kinetic parameters, rate constants, equilibrium sorption capacities, and the corresponding correlation coefficients were calculated and examined for each kinetic model. It was shown that copper adsorption can be described by the pseudo-second-order equation.  相似文献   

9.
Fine powder of Typha latifolia L. root was used for adsorption of copper and zinc ions from buffered and nonbuffered aqueous solutions. The adsorption reached equilibrium in 60 min. During this time, more than 90 % of the adsorption process was completed. The effect of initial pH, initial concentration of metal ion, and contact time was investigated in a batch system at room temperature. The optimum adsorption performance was observed at pH 5.00 and 4.25 for nonbuffered solutions of Cu(II) and Zn(II), respectively, while for buffered solutions it occurred at pH 6.00. The total metal uptake decreased on application of ammonium acetate buffer, from 37.35 to 17.00 mg g?1 and 28.80 to 9.90 mg g?1 for Cu(II) and Zn(II) solutions, respectively, with 100 mg L?1 initial concentration. The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models were used to describe the adsorption kinetics. The experimental data followed the pseudo-second-order kinetic model. The biosorption equilibrium was well described by Langmuir and Freundlich isotherm models.  相似文献   

10.
Batch experiments were carried out for the sorption of methylene blue onto rice husk particles. The operating variables studied were initial solution pH, initial dye concentration, adsorbent concentration, and contact time. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Langmuir isotherm equation. The monolayer sorption capacity of rice husks for methylene blue sorption was found to be 40.5833 mg/g at room temperature (32 degrees C). The sorption was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the sorption kinetics was found to follow a pseudo-second-order kinetic model. Also the applicability of pseudo second order in modeling the kinetic data was also discussed. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. The average external mass transfer coefficient and intraparticle diffusion coefficient was found to be 0.01133 min(-1) and 0.695358 mg/g min0.5. Analysis of sorption data using a Boyd plot confirms that external mass transfer is the rate limiting step in the sorption process. The effective diffusion coefficient, Di was calculated using the Boyd constant and was found to be 5.05 x 10(-04) cm2/s for an initial dye concentration of 50 mg/L. A single-stage batch-adsorber design of the adsorption of methylene blue onto rice husk has been studied based on the Langmuir isotherm equation.  相似文献   

11.
Oxalic acid adsorption from aqueous solution is studied in this work. Multi-walled carbon nanotubes (MWCNT) were used as an adsorbent. The investigated adsorption variables are equilibrium time, initial acid concentration, and temperature. The experimental results were presented using equilibrium isotherm and kinetic models. The used equilibrium models are Langmuir, Freundlich, and Temkin adsorption isotherms. And the kinetic models are Elovich, Lagergren pseudo-first-order and pseudo-second-order kinetic models. The thermodynamics studies were carried out at three different temperatures: 278, 298, and 318 K. Langmuir isotherm was the best fitted equilibrium model for the experimental data. The all applied kinetic models fitted the data suitably.  相似文献   

12.
The contamination with toxic dyes is the most important problem facing all over the world for water sources, environment and living beings. Therefore, in present study, the removal of fuchsin dye from aqueous environment was investigated using fish bones as source of biogenic apatite to the best removal efficiency. The removal efficiency of the adsorbent was investigated as a function of contact time and initial dye concentration. The highest removal capacity was found to 14.75 mg/g. The experimental data generally exhibit a good compliance with the pseudo-second-order equation. Langmuir and Freundlich models were also applied to experimental equilibrium data to find the best adsorption isotherm. Weber-Morris and Urano-Tachikawa models were used to calculate diffusion constants. The results were showed that fish bones can be effectively used as a sorbent for the removal of basic dyes from aqueous solutions.  相似文献   

13.
An indigenously prepared zinc chloride activated Ipomoea carnea (morning glory), a low-cost and abundant adsorbent, was used for removal of Cu(II) ions from aqueous solutions in a batch adsorption system. The chemical activating agent ZnCl2 was dissolved in deionised water and then added to the adsorbent in two different ratios 1:1 and 1:0.5 adsorbent to activating agent ratio by weight. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, and pH. Activated Ipomoea carnea (AIC) were characterised using scanning electron microscopy (SEM), iodine number and methylene blue number. High iodine numbers indicates development of micro pores with zinc chloride activation. Maximum adsorption was noted within pH range 6.0(±0.05). Adsorption process is fast initially and reaches equilibrium after about 4 hours. The kinetic data were analysed using pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model was found to agree well with the experimental data. Adsorption equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir model represented the sorption process better than the Freundlich model. Based on the Langmuir isotherm, the monolayer adsorption capacity of Cu(II) ions was 7.855 mg?g?1 for AIC (1:1) and 6.934 mg?g?1 for AIC (1:0.5).  相似文献   

14.
15.
《Comptes Rendus Chimie》2015,18(3):336-344
CuO supported on an NaA zeolite (CuO/NaA) was prepared with an NaA zeolite through the ion-exchange (CuO/NaA) method. The morphology and the physicochemical properties of the prepared samples were investigated by XRD, MEB, and EDS. The various parameters, such as contact time, catalyst dose, initial dye concentration, initial pH, and temperature, influencing the adsorption of methyl orange (MO) were optimized. The MO adsorption equilibrium was reached after 240 min of contact time. Removal of MO is better at neutral pH than in acidic and alkaline solutions. Among the tested models, the equilibrium adsorption data are well fitted by the Langmuir isotherm. The adsorption kinetics is best described by the pseudo-second-order model. The evaluation of the thermodynamic parameters, i.e. ΔGo, ΔHo, and ΔSo, revealed that MO adsorption was spontaneous, while the activation energy (20.98 kJ/mol) indicates a physical adsorption. The photodegradation of MO decreased from 100 mg/L down to 2 mg/L when the solution is exposed to visible light.  相似文献   

16.
In this work, application of polyaniline coated onto wood sawdust (PAni/SD) for the removal of methyl orange (MO) as a typical azo dye from aqueous solutions is introduced. The effects of some important parameters such as pH, initial concentration, sorbent dosage, and contact time on the uptake of MO solution were also investigated. In order to get a better comparison, adsorption experiments were also carried out using commercial grade of granulated activated carbon (GAC) and sawdust without coating (SD) at the same time. It was found that PAni/SD can be used to remove azo dyes such as MO from aqueous solutions very efficiently. Experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Kinetic parameters for the adsorption of MO dyes for the selected adsorbents are also reported. In order to study the possibility of desorption for frequent application, chemical regeneration of the used adsorbents was also investigated. Desorption or recovery of dye and regeneration of adsorbent (PAni/SD) was found to be quite possible and of high performance. Application of modified sawdust with polyaniline for the removal of azo dye is very promising for textile wastewater treatment.  相似文献   

17.
The adsorption of basic dye (i.e., ethyl violet or basic violet 4) from aqueous solution onto the regenerated spent bleaching earth (RSBE) was carried out by varying the process parameters such as initial concentration, pH, and temperature. As analytical comparisons, activated bleaching earth (ABE) was also used as adsorbent for the adsorption of the basic dye at various initial concentrations. The experimental results showed that the adsorption process can be well described with the pseudo-second-order reaction model and less fitted by the intra-particle diffusion model. The kinetic parameters of both models obtained in the present work are in line with pore properties of the two adsorbents. According to the equilibrium adsorption capacity from the fitting of pseudo-second-order reaction model, it was further found that the both models of Langmuir and Freundlich appeared to fit well the isotherm data. In addition, the thermodynamic parameters were evaluated based on the pseudo-second-order rate constants, showing that the adsorption of ethyl violet onto the RSBE is endothermic in nature.  相似文献   

18.
Nano-bentonite was used as an adsorbent to remove nickel ions from aqueous solutions. Experimental investigation was carried out to identify the effect of pH, contact time, initial concentration, and adsorbent dose of Ni(II). Equilibrium data were described by and fitted to Langmuir, Freundlich, and Dubinin–Radushkevich models. Results showed that the optimum conditions for the removal of the Ni(II) are initial concentration 100 mg/L, adsorbent dose 0.5 g, and pH 6. Surface morphology and functionality of nano-bentonite were characterized by SEM and FTIR. The kinetics data were more accurately described by pseudo-second-order model. The intra-particle diffusion model gave multi-linear curves, so more than one step controlled the adsorption process. Nano-bentonite removed nickel with maximum adsorption capacity of 39.06 mg/g (30°C, pH) and thermodynamic data indicated that adsorption reaction is spontaneous and of an endothermic nature.  相似文献   

19.
The objective of this study is to remove the phenol from aqueous solution by using the neutralized red mud in batch adsorption technique. The study was carried out as functions of contact time, pH, initial phenol concentration, red mud dosage and effect of salt addition. The experiments demonstrated that maximum phenol removal was obtained in a wide pH range of 1-9 and it takes 10 h to attain equilibrium. The adsorption data was analyzed using the Langmuir and the Freundlich isotherm models and it was found that the Freundlich isotherm model represented the measured sorption data well. The influence of addition of salt on phenol removal depends on the relative affinity of the anions for the red mud surface and the relative concentrations of the anions.  相似文献   

20.
The potential of using rice straw fly ash (RSFA) as low-cost adsorbents for the removal of hazardous azorhodanine (AR) dye from aqueous solution was investigated. The effects of different variables in the batch method as a function of solution pH, contact time, concentration of adsorbate, adsorbent dosage, and temperature were investigated, and optimal experimental conditions were ascertained: 0.05 g for initial dye concentration of 20–100 mg/L at pH 2. The experimental equilibrium data were tested by the isotherm models, namely the Langmuir and Freundlich adsorption and the isotherm constants were determined. The kinetic models, pseudo-first-order and pseudo-second-order, were employed to analyze the kinetic data. The activation energy of adsorption was also evaluated and found to be +10.89 kJ.mol?1, indicating that the adsorption is physisorption. Various thermodynamic parameters, such as Gibbs free energy, entropy, and enthalpy of the ongoing adsorption process, have been calculated and found to be spontaneous and exothermic, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号