首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Core-shell nanoparticles have been prepared by irradiation of gamma-ray on block copolymer micelles consisting of hydrophilic polyacrylic acid and hydrophobic polyisoprene with each 40 monomer units. The structure was determined by means of dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The size distribution of the core-shell nanoparticles determined by DLS and AFM was very narrow. The average diameter of the particles decreased from 48 nm for the original micelles to 26 nm by the irradiation of 30 kGy. The core size determined by SAXS combined with DLS was roughly constant of 10 nm, irrespective of irradiation dose, whereas the shell thickness of the micelles was twice as large as the core size, and decreased with increasing irradiation dose.  相似文献   

2.
CTAB-stabilized gold nanoparticles were synthesized by applying the seeding-growth approach in order to gain information about the size dependence of the catalytic reduction of p-nitrophenol to p-aminophenol with sodium borohydride. Five different colloidal solutions of stabilized gold nanoparticles have been characterized by TEM, AFM, UV-Vis, SAXS, and DLS for their particle size distributions. Gold nanoparticles (mean sizes: 3.5, 10, 13, 28, 56 nm diameter) were tested for their catalytic efficiency. Kinetic data were acquired by UV-Vis spectroscopy at different temperatures between 25 and 45 °C. By studying the p-nitrophenol to p-aminophenol reaction kinetics we determined the nanoparticle size which is needed to gain the fastest conversion under ambient conditions in the liquid phase. Unexpectedly, CTAB-stabilized gold nanoparticles with a diameter of 13 nm are most efficient.  相似文献   

3.
陈霞  翟翠萍 《化学研究》2014,(1):20-23,32
以氯金酸为前驱体,十二烷基硫醇和硼氢化钠分别作为稳定剂和还原剂,采用相转移法制备了单分散的金纳米粒子.将金纳米粒子通过乳液聚合的方法制备了纳米金/聚苯乙烯复合粒子.通过紫外-可见吸收光谱(UV-Vis)研究了纳米金和纳米金/聚苯乙烯复合粒子的光吸收特性,使用傅立叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电子显微镜(TEM)和动态光散射(DLS)对产物的组成、晶体结构、形貌、以及粒径进行了表征.结果表明,复合粒子为粒径分布较窄的球形,其中的金纳米粒子为面心立方结构.热失重分析(TGA)说明制备的纳米金/聚苯乙烯复合粒子具有很好的热稳定性.  相似文献   

4.
Hybrid gold–polymer nanoparticles are obtained by self‐assembly of amphiphilic copolymers (Pluronics) in solutions containing preformed gold nanoparticles (diameter ca. 12 nm). Dynamic light scattering, TEM, cryo‐TEM, and small‐angle neutron scattering experiments with contrast variation are used to characterize the structure of the gold–polymer particles. Five Pluronics (F127, F68, F88, F108, P84) with different molecular weights and hydrophilic/hydrophobic balances are investigated. Gold nanoparticles are individually embedded within globules of polymer, even under conditions for which Pluronics micelles do not form in solution. The hybrid particles are several tens of nanometers in size (larger than micelles of the corresponding Pluronics), and the size can be tuned by changing the temperature.  相似文献   

5.
The simultaneous homogeneous and heterogeneous precipitation of hydrous Fe(III) oxides was investigated in the presence of environmentally ubiquitous anions (nitrate, chloride, and sulfate). Experiments were conducted with 10(-4) M Fe(III) at acidic pH (pH = 3.7 ± 0.2), which often occurs at acid mine drainage sites or geologic CO(2) storage aquifers near injection wells. Quartz was used as a model substrate for heterogeneous precipitation. Small angle X-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), atomic force microscopy (AFM), and dynamic light scattering (DLS) measurements were conducted. In situ SAXS/GISAXS quantified the size, total particle volume, number, and surface area evolutions of the primary nanoparticles formed in the nitrate and chloride systems. In both systems, the heterogeneously precipitated particles were smaller than the homogeneously precipitated particles. Compared with chloride, the volume of heterogeneously precipitated hydrous Fe(III) oxides on the quartz surface was 10 times more in the nitrate system. After initial fast heterogeneous nucleation in both nitrate and chloride systems, nucleation, growth, and aggregation occurred in the nitrate system, whereas Ostwald ripening was the dominant heterogeneous precipitation process in the chloride system. In the sulfate system, fast growth of the heterogeneously precipitated particles and fast aggregation of the homogeneously precipitated particles led to the formation of particles larger than the detection limit of GISAXS/SAXS. Thus, the sizes of the particles precipitated on quartz surface and in solution were analyzed with AFM and DLS, respectively. This study provides unique qualitative and quantitative information about the location (on quartz surfaces vs in solutions), size, volume, and number evolutions of the newly formed hydrous iron oxide particles in the presence of quartz substrate and ubiquitous anions, which can help in understanding the fate and transport of pollutants in the environment.  相似文献   

6.
Fluoroalkyl end-capped co-oligomeric nanoparticles, which were prepared by the reaction of fluoroalkanoyl peroxide with 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 1-hydroxy-5-adamantylacrylate (Ad-HAc), were applied to the preparation of novel fluorinated co-oligomeric nanocomposite-encapsulated gold nanoparticles. These fluorinated gold nanocomposites were easily prepared by the reductions of gold ions with poly(methylhydrosiloxane) (PMHS) in the presence of the corresponding fluorinated nanoparticles and tri -n-octylamine (TOA) in 1,2-dichloroethane (DE) at room temperature. These fluorinated gold nanoparticles were isolated as wine-red powders and were found to exhibit good dispersibility in a variety of traditional organic solvents such as DE, methanol, and t-butyl alcohol to afford transparent wine-red solutions. The morphology and stability of these fluorinated co-oligomeic nanocomposite-encapsulated gold nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering measurements (DLS), and UV-vis spectroscopy. DLS measurements and UV-vis spectroscopy showed that these particles are nanometer-size-controlled very fine nanoparticles (185-218 nm) that exhibit a plasmon absorption band at around 530 nm. TEM images also showed that gold nanoparticles are tightly encapsulated into fluorinated co-oligomeric nanoparticle cores. Interestingly, these fluorinated co-oligomeric nanocomposites-encapsulated gold nanoparticles were found to afford linear arrays of these fluorinated nanoparticles with increases in the feed amounts of TOA. More interestingly, these fluorinated gold nanoparticles were able to afford the extremely red-shifted plasmon absorption band at around 960 nm.  相似文献   

7.
The growth of gold nanoparticles without chemical reduction of gold (III) ions was achieved by the disruption of thermoresponsive polymers conjugated with the gold nanoparticles through the phase transition of the polymers. When a solution of gold nanoparticles coated with thermoresponsive polymers was heated, chains of the thermoresponsive polymers were disrupted because of dehydration, resulting in the fusion of gold nanoparticles to form larger nanoparticles. The evolution of the extinction band around 550 nm evidenced the formation of these large (post-fusion) gold nanoparticles, which were characterized by transmission electron microscope (TEM) and dynamic light scattering (DLS). TEM images verified the formation of the large gold nanoparticles having particle sizes of 80-100 nm, whereas DLS indicated the existence of large nanoparticles with hydrodynamic diameters exceeding 200 nm. The deposition did not require the addition of reductants or trivalent gold ions for the formation of the large gold nanoparticles. Both the heating and the solution conditions were studied to elucidate the mechanism of the formation of large gold nanoparticles.  相似文献   

8.
We report interesting self-assembly behavior of a polyglyceryl-modified silicone surfactant in the aqueous solution; the sample has been characterized through measurements of surface tension, transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle x-ray scattering (SAXS). Aqueous solutions of this surfactant had a low critical aggregation concentration (CAC) and surface tension (21.5 mN · m?1), substantially lower than those reported for polyether-modified silicone surfactants with a similar molecular architecture. DLS and TEM revealed self-assembled spherical micelles with a narrow size distribution. At higher concentrations (10 wt%), linear packing of micelles was observed, while the micelle size distribution remained similar (50–90 nm). SAXS data could be fitted through the use of a core–shell model and implied that the core radius remained roughly 4.3–6.0 nm for all solutions of the surfactant analyzed. The origin of its curious aggregates behavior is attributed to hydrogen bonding, steric effects, and the directionality of bond angle from the polyglyceryl block of this novel class of silicone surfactant. This type of surfactant coupling lipophilic segments assembles the cores of the micelles in water which may find positive factors for potential applications such as microreaction compartmentalization.  相似文献   

9.
The time dependence of small-angle X-ray scattering (SAXS) curves for silver nanoparticle formation was followed in situ at a time resolution of 0.18 ms, which is 3 orders of magnitude higher than that used in previous reports (ca. 100 ms). The starting materials were silver nitrate solutions that were reacted with reducing solutions containing trisodium citrate. The SAXS analyses showed that silver nanoparticles were formed in three distinct periods from a peak diameter of ca. 0.7 nm (corresponding to the size of a Ag(13) cluster) during the nucleation and the early growth period. The Ag(13) clusters are most likely elementary clusters that agglomerate to form silver nanoparticles.  相似文献   

10.
Stable ultra-small gold nanoparticles have been synthesized in aqueous phase by using a tri-block copolymer (BMB) as a templating agent consisting of two PEG-methylacrylate chains (B blocks) anchored to a poly(methacrylic) moiety containing a trithiocarbonate unit (M block). The effect of the BMB/Au molar ratios on the final particle size, shape and monodispersity has been investigated. The synthesized nanosols have been characterized by means of Visible Absorption, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Results clearly indicate that the polymer plays a key role in determining the size and shape of gold particles, from fractal-like structures to monodisperse spherical particles with a mean diameter of about 3 nm. The aggregation behavior of these nanostructures has been characterized both in solution (SAXS) as well as on mica substrate (AFM) and has been proven to be driven by the polymer to gold concentration ratio.  相似文献   

11.
This work reports the growth of layered nickel hydroxide/gold films by sol-gel and dip-coating methods to obtain colored films for applications in switchable optical devices. The nickel and gold-based films were deposited on mica and glass plates from alcoholic sols. The distribution of electron density inhomogeneities (voids, nickel and gold particles) in the films was determined by means of small angle X-ray scattering (SAXS). The SAXS measurements were used to determine the nickel and gold particle sizes and to give guidelines to the appropriate chemical route to deposit homogeneous colored films. X-ray diffraction (XRD) was used to monitor the crystalline properties. Transmission electron microscopy (TEM) was used to observe the nanostructure of the gold particles and atomic force microscopy (AFM) to analyze the film surface. Spectral transmission was used to investigate the optical properties in these different layered systems, which present an absorption band in the visible region due to the gold aggregates. The composite material is deep blue. The analyses of SAXS data, TEM and AFM pictures are consistent, i.e., the formed Au particles are polydisperse in size and their clustering depends on the NiO x H y layer. The Au particles are polycrystalline, with [111]-preferred orientation, as determined by XRD. The nickel oxy-hydroxide matrix is amorphous.  相似文献   

12.
帽状金纳米结构的制备、表征及表面增强拉曼散射活性   总被引:1,自引:0,他引:1  
采用真空离子溅射法在自组装的单层阵列二氧化硅纳米粒子表面沉积金薄膜, 制备了以SiO2为核的帽状金纳米结构. 用透射电镜、扫描电镜、原子力显微镜、X 射线衍射仪和紫外-可见-近红外分光光度计对样品的表面形貌、结构及光学性质进行了表征. 以亚甲基蓝作为探针分子, 对金纳米帽的表面增强拉曼散射活性进行了研究, 结果显示, 吸附在金纳米帽上的分子拉曼散射信号得到显著增强, 增强因子达到107数量级. 该基底在超灵敏生物和化学检测方面具有潜在的应用前景.  相似文献   

13.
金纳米粒子的阳光光化学合成和晶种媒介生长   总被引:3,自引:1,他引:3  
在柠檬酸盐-HAuCl4溶液体系中, 于高原太阳紫外线辐射下光化学合成了分散良好、尺寸分布窄的胶体金纳米粒子. 研究了溶液的酸度和太阳辐射条件对Au(Ⅲ)离子光化学还原反应速率和形成金纳米粒子尺寸的影响; 采用晶种媒介生长技术, 通过改变Au(0)/Au(Ⅲ)比合成了平均直径为4.9~9.7 nm的球形金粒子. 根据紫外-可见吸收光谱和透射电子显微镜的表征和分析, 讨论了光化学反应中自由基反应、金纳米粒子成核和生长机理.  相似文献   

14.
The application of the dynamic light scattering (DLS) method for determining the size distribution of colloidal gold nanoparticles in a range of 1–100 nm is discussed. It is shown that rotational diffusion of nonspherical strongly scattering particles with sizes of larger than 30–40 nm results in the appearance of a false peak in a size range of about 5–10 nm. In this case, the uncritical application of the DLS method may yield particle volume or number size distributions different from those obtained by transmission electron microscopy. For weakly scattering particles with diameters of smaller that 20 nm, the DLS method demonstrates an additional peak of intensity distribution in the region of large sizes that is related to particle aggregates or byproduct particles rather than individual nanoparticles. Practical methods for solving the problem of false peaks are discussed. It is established that the width of the DLS distribution does not correspond to transmission electron microscopy data and is overestimated. The advantages and drawbacks of the methods are compared and it is noted that, at present, the DLS method is the only instrument suitable for nonperturbative and sensitive diagnostics of relatively slow aggregation processes with characteristic times on the order of 1 min. In particular, this method can be used to diagnose gold nanoparticle conjugate aggregation initiated by biospecific interactions on their surface.  相似文献   

15.
Water-dispersible selenium nanoparticles (SeNPs) were created by using natural hyperbranched polysaccharide (HBP) as the stabilizer and capping agent under extremely safe conditions. The structure, morphology, size, and stability of the nanocomposites were investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and static and dynamic light scattering (DLS) measurements. The results revealed that the spherical selenium nanoparticles (mean particle size of about 24 nm) were ligated with HBP to form nanocomposites (Se-HBP) in aqueous solution and were stable for over one month. In our findings, supported by the results of FTIR, TEM, AFM, and DLS, SeNPs were capped with the HBP macromolecules, as a result of strong physical adsorption of OH groups on Se surfaces, leading to a highly stable structure of Se nanoparticles in water. This work provided reaction sites for the complexation between HBP and Se to fabricate well-dispersed Se nanoparticles in aqueous system with potential bioapplications.  相似文献   

16.
以天然不饱和脂肪酸共轭亚油酸(CLA)为绿色单体, 通过简单的分子自组装和可控自交联反应制备聚共轭亚油酸(PCLA)聚集体. 透射电子显微镜(TEM)结果显示, PCLA聚集体的形貌呈现独特网状结构, 其联结单元为来自于CLA胶束的膨大颗粒. 采用氯金酸在极性聚合物表面原位还原, 2 d后在网状PCLA基底上制备得到以CLA胶束为核(20 nm)的网状纳米金结构, 而且网状PCLA的原位还原作用与模板作用相结合是获得PCLA基网状纳米金的充分必要条件. 与普通球形胶态金纳米颗粒[(5±1) nm]相比, PCLA基网状纳米金对苯硫酚具有更好的表面增强拉曼散射(SERS)效应, 对对硝基苯酚具有更好的催化还原效果.  相似文献   

17.
Cellulose triacetate (CTA) derivatives having a disulfide group at the reducing-end (CTA2S, CTA13S, CTA41S), with number average degrees of polymerization (DPns) of 2, 13 and 41, respectively, were prepared. The CTA-self-assembled gold nanoparticles (CTA2Au, CTA13Au, and CTA41Au) were obtained through the reduction of gold salt (HAuCl4) with CTASs. The diameters (d) and the interparticle distances (L) of the gold cores were analyzed by transmission electron microscopy (TEM) observations. The d values of CTA2Au, CTA13Au, and CTA41Au, were 8.7, 7.9, and 13.4 nm respectively. The L values of CTA2Au, CTA13Au, and CTA41Au, were 2.8, 6.3, and 20.9 nm, respectively, and agreed well with the molecular length (l) of CTAS chains (ls of CTA2S, CTA13S, CTA41S = 2.0, 7.5, 21.5 nm, respectively). The hydrodynamic diameters (D) of CTAAu nanoparticles in chloroform solution, measured by dynamic light scattering (DLS), were larger than the d values and increased with the increase in the molecular length of the CTA chains. The CTAS chain was found to work as an excellent stabilizer of the gold nanoparticles in both solid state and solution. The molecular length of CTA chains controlled the size and the alignment of the gold nanoparticles. As a result, the radially oriented CTA chains on the gold nanoparticles were successfully prepared.  相似文献   

18.
Amphiphilic gold nanoparticles grafted with V-shaped brushes (Au-V-brushes) were prepared by grafting a polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer with a trithiocarbonate group as the junction to the Au surface. The obtained Au-V-brushes were subjected to solubility test and UV-vis, FT-IR, TEM and DLS characterizations. It is found that the Au-V-brushes are soluble in both water and organic solvents. In the common solvent DMF, the size of the Au-V-brushes is about 17 nm, whereas in selective solvents (toluene and water) aggregates of 70-90 nm are formed. Phase transfer of the Au-V-brushes from the water phase into the toluene phase occurs upon addition of Na(2)SO(4) into water and the Au-V-brushes can also transfer from the toluene phase to the interface of toluene and water phases after addition of citric acid in the water phase.  相似文献   

19.
Clear solutions for colloidal Silicalite-1 synthesis were prepared by reacting tetraethylorthosilicate in aqueous tetrapropylammonium hydroxide solution. A dilution series with water resulting in clear solutions with a TEOS ratio TPAOH ratio H2O molar ratio of 25 : 9 : 152 up to 25 : 9 : 15,000 was analysed using liquid 29Si nuclear magnetic resonance (NMR), synchrotron small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Particle sizes were derived independently from DLS and from the combination of SAXS and NMR. NMR allowed quantitative characterization of silicon distributed over nanoparticles and dissolved oligomeric silicate polyanions. In all samples studied, the majority of silicon (78-90%) was incorporated in the nanoparticle fraction. In concentrated suspensions, silicate oligomers were mostly double-ring species (D3R, D4R, D5R, D6R). Dilution with water caused their depolymerisation. Contrarily, the internal condensation and size of nanoparticles increased with increasing dilution. SAXS revealed a decrease of effective nanoparticle surface charge upon dilution, reducing the effective particle interactions. With DLS, the reduction of nanoparticle interactions could be confirmed monitoring the collective diffusion mode. The observed evolution of nanoparticle characteristics provides insight in the acceleration of the Silicalite-1 crystallization upon dilution, in view of different crystallization models proposed in the literature.  相似文献   

20.
DNA-mediated gold nanoparticles were prepared by chemical reduction of DNA-Au(III) complex. The DNA-Au(III) was first formed by reacting DNA with HAuCl? at a pH of 5.6. The complex in solution was reacted with hydrazine reducing Au(III) to Au. The reduced Au formed nanodimensional aggregates. The particle distributions were obtained by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This method resulted in a rather uniform dispersion of Au nanoparticles of near-spherical shape and 45~80 nm in diameter. Gold nanoparticles were embedded and stabilized by DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号