首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The prototype hetero-binuclear complexes containing metal-metal bonds, {CpRh[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(5a), Se(5b); Cp = Cp = eta 5-1,3-tBu2C5H3, E = S(6a), Se(6b)) and {CpCo[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(7a), Se(7b); Cp = Cp = eta 5-C5H5, E = S(8a), Se(8b)) were obtained from the reactions of 16-electron complexes CpRh[E2C2(B10H10)] (Cp = Cp*, E = S(1a), Se(1b); Cp = Cp, E = S(2a), Se(2b)), CpCo[E2C2(B10H10)] (Cp = Cp*, E = S(3a), Se(3b); Cp = Cp, E = S(4a), Se(4b)) with Fe(CO)5 in the presence of Me3NO. The molecular structures of {Cp*Rh[E2C2(B10H10)]}[Fe(CO)3] (E = S(5a), Se(5b)), {CpRh[S2C2(B10H10)]}[Fe(CO)3] (6a) {Cp*Co[S2C2(B10H10)]}[Fe(CO)3] (7a) and {CpCo[S2C2(B10H10)]}[Fe(CO)3] (8a) have been determined by X-ray crystallography. All these complexes were characterized by elemental analysis and IR and NMR spectra.  相似文献   

2.
Cp*ZrMe3 reacts with silica pretreated at 800 degrees C, SiO(2-(800)) through two pathways: (a) protolysis of a Zr-Me group by surface silanols and (b) transfer of a methyl group to the surface by opening of strained siloxane bridges, in a relative proportion of ca. 9/1, respectively, affording a well-defined surface species [([triple bond]SiO)ZrCp*(Me)2], 3, but with two different local environments 3a, [([triple bond]SiO)ZrCp*(Me)2][[triple bond]Si-O-Si[triple bond]], and the other with 3b, [structure: see text]. The reaction of the species 3 with B(C6F5)3 is controlled by this local environment and gives three surface species [([triple bond]SiO)ZrCp*(Me)](+)[MeB(C6F5)3]- [[triple bond]Si-O-Si[triple bond]], 4a (20%), [([triple bond]SiO)ZrCp*(Me)](+)[(Me)B(C6F5)3]- [[triple bond]Si-Me], 4b (10%), and [([triple bond]SiO)2ZrCp*](+)[(Me)B(C6F5)(3)](-)[[triple bond]Si-O-Si[triple bond]], 5 (70%). On the contrary, the reaction of Cp*Zr(Me)3, Cp2Zr(Me)2 with [[triple bond]SiO-B(C6F5)3](-)[HNEt2Ph]+, 6, leads to a unique species [([triple bond]SiO)B(C6F5)3](-)[Cp*Zr(Me)2.NEt2Ph]+, 7, and [([triple bond]SiO)ZrCp2](+)[(Me)B(C6F5)3]-, 9 respectively. The complexes 4 and 7 are active catalysts in ethylene polymerization at room temperature, 93 and 67 kg PE mol Zr1- atm(-1) bar(-1), respectively, indicating that covalently bounded Zr catalyst 4 is slightly more active than the "floating" cationic catalyst 7.  相似文献   

3.
The synthesis and reactivity of [Tp*Zr(CH2Ph)2][B(C6F5)4] (2, Tp* = HB(3,5-Me2pz)3, pz = pyrazolyl) have been explored to probe the possible role of Tp'MR2+ species in group 4 metal Tp'MCl3/MAO olefin polymerization catalysts (Tp' = generic tris(pyrazolyl)borate). The reaction of Tp*Zr(CH2Ph)3 (1) with [Ph3C][B(C6F5)4] in CD2Cl2 at -60 degrees C yields 2. 2 rearranges rapidly to [{(PhCH2)(H)B(mu-Me2pz)2}Zr(eta2-Me2pz)(CH2Ph)][B(C6F5)4] (3) at 0 degrees C. Both 2 and 3 are highly active for ethylene polymerization and alkyne insertion. Reaction of 2 with excess 2-butyne yields the double insertion product [Tp*Zr(CH2Ph)(CMe=CMeCMe=CMeCH2Ph)][B(C6F5)4] (4). Reaction of 3 with excess 2-butyne yields [{(PhCH2)(H)B(mu-Me2pz)2}Zr(Cp*)(eta2-Me2pz)][B(C6F5)4] (6, Cp* = C5Me5) via three successive 2-butyne insertions, intramolecular insertion, chain walking, and beta-Cp* elimination.  相似文献   

4.
The thermolysis of the phosphinidene complex [Cp*P[W(CO)5]2] (1) in toluene in the presence of tBuC(triple bond)CMe leads to the four-membered ring complexes [[[eta2-C(Me)C(tBu)]Cp*(CO)W(mu3-P)[W(CO)3]][eta4:eta1:eta1-P[W(CO)5]WCp*(CO)C(Me)C(tBu)]] (4) as the major product and [[W[Cp*(CO)2]W(CO)2WCp*(CO)[eta1:eta1-C(Me)C(tBu)]](mu,eta3:eta2:eta1-P2[W(CO)5]] (5). The reaction of 1 with PhC(triple bond)CPh leads to [[W(Co)2[eta2-C(Ph)C(Ph)]][(eta4:eta1-P(W(CO)5]W[Cp*(CO)2)C(Ph)C(Ph)]] (6). The products 4 and 6 can be regarded as the formal cycloaddition products of the phosphido complex intermediate [Cp*(CO)2W(triple bond)P --> W(CO)5] (B), formed by Cp* migration within the phosphinidene complex 1. Furthermore, the reaction of 1 with PhC(triple bond)CPh gives the minor product [[[eta2:eta1-C(Ph)C(Ph)]2[W(CO)4]2][mu,eta1:eta1-P[C(Me)[C(Me)]3C(Me)][C(Ph)](C(Ph)]] (7) as a result of a 1,3-dipolaric cycloaddition of the alkyne into a phosphaallylic subunit of the Cp*P moiety of 1. Compounds 4-7 have been characterized by means of their spectroscopic data as well as by single-crystal X-ray structure analysis.  相似文献   

5.
The synthesis, structures, and unusual reactivity of (C5R5)2ZrR'(ClPh)+ chlorobenzene complexes are described. The reaction of (C5R5)2ZrR'2 with [Ph3C][B(C6F5)4] in C6D5Cl affords [(C5R5)2ZrR'(ClC6D5)][B(C6F5)4] chlorobenzene complexes (1-d5, R' = CH2Ph and (C5R5)2 = (C5H5)2; 2a-d-d5, R' = Me and (C5R5)2 = rac-(1,2-ethylene(bis)indenyl) (2a), (C5H5)2 (2b), (C5H4Me)2 (2c), (C5Me5)2 (2d, C5Me5 = Cp*)). Complexes 1 and 2b,c are thermally robust but are converted to [{(C5R5)2Zr(mu-Cl)}2][B(C6F5)4]2 (4b,c) by a photochemical process in ClPh solution. In contrast, 2d undergoes facile thermal ortho-C-H activation to yield [Cp*2Zr(eta2-C,Cl-2-Cl-C6H4)][B(C6F5)4] (5), which slowly rearranges to [(eta4,eta1-C5Me5C6H4)Cp*ZrCl][B(C6F5)4] (6) via beta-Cl elimination and benzyne insertion into a Zr-CCp* bond. The higher thermal reactivity of 2d versus that of 1 and 2b,c is attributed to steric crowding associated with the Cp* ligands of 2d, which forces a ClPh ortho-hydrogen close to the Zr-Me group.  相似文献   

6.
The 16-electron half-sandwich rhodium complex [Cp*Rh{E2C2(B10H10)}] [Cp* = eta5-C5Me5, E = S (1a), Se (1b)] [Cp*Rh{E2C2(B10H10)} = eta5-pentamethylcyclopentadienyl[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium] reacted with Mo(CO)3(py)3 in the presence of BF3.Et2O in THF solution to afford the {Cp*Rh[E2C2(B10H10)]}2Mo(CO)2 (E = S (3a); Se (3b)), {Cp*Rh[S2C2(B10H10)]}{Mo(CO)2[S2C2(B10H10)]} (4). The voluminous di-tert-butyl substituted Cp half-sandwich rhodium complex [Cp'Rh{E2C2(B10H10)}] [E = S (2a), Se (2b)] [CpRh{E2C2(B10H10)} = eta5-(1,3-di(tert-butyl)cyclopentadienyl-[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium) reacted with W(CO)3(py)3 in the presence of BF3.Et2O in THF solution to give the {Cp'Rh[S2C2(B10H10)]}{W(CO)2[S2C2(B10H10)]} (5) and {Cp'Rh[Se2C2(B10H10)]}(mu-CO)[W(CO)3] (6), respectively. The complexes have been fully characterized by IR and NMR spectroscopy as well as by elemental analyses. The X-ray crystal structures of the complexes 3-6 are reported.  相似文献   

7.
Photolysis of acetonitrile solutions of Cp*Ir(R2dtc)(N3) [Cp* = eta5-C5Me5, R2dtc = S2CNR2; R = Me (1) or Et (1')] at temperatures below 0 degrees C afford five-coordinate complexes Cp*Ir{NSC(NR2)S} (2 or 2'), where a nitrogen atom has been inserted into one of the Ir-S bonds. In solution, complex 2 thermally convert to the azaethene-1,2-dithiolate complex, Cp*Ir[SN=C(NMe2)S] (3), which could be crystallized as the corresponding dimer, {Cp*Ir[mu-SN=C(NMe2)S-kappa3S:S,S']}2 (4). As a result, a nitrogen atom that originated in the azide ligand is transferred into a C-S bond of the dithiocarbamate.  相似文献   

8.
Catalytic dehydrocoupling of phosphines was investigated using the anionic zirconocene trihydride salts [Cp*2Zr(mu-H)3Li]3 (1 a) or [Cp*2Zr(mu-H)3K(thf)4] (1 b), and the metallocycles [CpTi(NPtBu3)(CH2)4] (6) and [Cp*M(NPtBu3)(CH2)4] (M=Ti 20, Zr 21) as catalyst precursors. Dehydrocoupling of primary phosphines RPH2 (R=Ph, C6H2Me3, Cy, C10H7) gave both dehydrocoupled dimers RP(H)P(H)R or cyclic oligophosphines (RP)n (n=4, 5) while reaction of tBu3C6H2PH2 gave the phosphaindoline tBu2(Me2CCH2)C6H2PH 9. Stoichiometric reactions of these catalyst precursors with primary phosphines afforded [Cp*2Zr((PR)2)H][K(thf)4] (R=Ph 2, Cy 3, C6H2Me3 4), [Cp*2Zr((PPh)3)H][K(thf)4] (5), [CpTi(NPtBu3)(PPh)3] (7) and [CpTi(NPtBu3)(mu-PHPh)]2 (8), while reaction of 6 with (C6H2tBu3)PH2 in the presence of PMe3 afforded [CpTi(NPtBu3)(PMe3)(P(C6H2tBu3)] (10). The secondary phosphines Ph2PH and (PhHPCH2)2CH2 also undergo dehydrocoupling affording (Ph2P)2 and (PhPCH2)2CH2. The bisphosphines (CH2PH2)2 and C6H4(PH2)2 are dehydrocoupled to give (PCH2CH2PH)2)(12) and (C6H4P(PH))2 (13) while prolonged reaction of 13 gave (C6H4P2)(8) (14). The analogous bisphosphine Me2C6H4(PH)2 (17) was prepared and dehydrocoupling catalysis afforded (Me2C6H2P(PH))2 (18) and subsequently [(Me2C6H2P2)2(mu-Me2C6H2P2)]2 (19). Stoichiometric reactions with these bisphosphines gave [Cp*2Zr(H)(PH)2C6-H4][Li(thf)4] (22), [CpTi(NPtBu3)(PH)2C6H4]2 (23) and [Cp*Ti(NPtBu3)(PH)2C6H4] (24). Mechanistic implications are discussed.  相似文献   

9.
The synthesis and characterization of a series of cationic zirconium and hafnium complexes with alkyl substituents bearing beta-hydrogens of general formula {(eta(5)-C5Me5)MR[N(Et)C(Me)N(t-Bu)]}[B(C6F5)4] [M = Zr; R = Et, n-Pr, i-Pr, n-Bu, i-Bu, and 2-ethylbutyl (5a-f) and M = Hf; R = i-Bu and t-Bu (6 and 7, respectively)] is described, including several isotopically labeled derivatives. The ability of these complexes to serve as model complexes for the living Ziegler-Natta polymerization of olefins that can be effected using the initiator 2a (R = Me in 5) has been addressed. The results obtained shed additional light on the steric and electronic factors that can contribute to the living character of a Ziegler-Natta polymerization based on an early transition metal initiator.  相似文献   

10.
Herein we describe different C-C coupling reactions of permethyltitanocene and -zirconocene with disubstituted 1,3-butadiynes. The outcomes of these reactions vary depending on the metals and the diyne substituents. The reduction of [Cp2*MCl2] (Cp* = C5Me5; M = Ti, Zr) with Mg in the presence of disubstituted butadiynes RC triple bond C-C triple bond CR' is suitable for the synthesis of different C-C coupling products of the diyne and the permethylmetallocenes, and provides a new method for the generation of functionalized pentamethyl-cyclopentadienyl derivatives. For M = Zr and R = R' = tBu, the reaction gives, by a twofold activation of one pentamethylcyclopentadienyl ligand, the complex [Cp*Zr[-C(=C=CHtBu)-CHtBu-CH2-eta5-C5Me3-CH2-]] (3), containing a fulvene ligand that is coupled to the modified substrate (allenic subunit). When using the analogous permethyltitanocene fragment "Cp2*Ti", the reaction depends strongly on the substituents R and R'. The coupling product of the butadiyne with two methyl groups of one of the pentamethylcyclopentadienyl ring systems, [Cp*Ti[eta5-C5Me3-(CH2-CHR-eta2-C2-CHR'-CH2)]], is obtained with R = R' = tBu (4) and R = tBu, R' = SiMe3 (5). In these complexes one pentamethylcyclopentadienyl ligand is annellated to an eight-membered ring with a C-C triple bond, which is coordinated to the titanium center. A different activation of both pentamethylcyclopentadienyl ligands is observed for R = R' = Me, resulting in the complex [[eta5-C5Me4(CH2)-]Ti[-C(=CHMe)-C(=CHMe)-CH2-eta5-C5Me4]] (6), which displays a fulvene as well as a butadienyl-substituted pentamethylcyclopentadienyl ligand. The influence exerted by the size of the metal is illustrated in the reaction of [Cp2*ZrCl2] with MeC triple bond C-C triple bond CMe. Here the five-membered metallacyclocumulene complex [Cp2*Zr(eta4-1,2,3,4-MeC4Me)] (7) is obtained. The reaction paths found for R = R' = Me are identical to those formerly described for R = R' = Ph.  相似文献   

11.
The titanium methyl cation [Cp*((tBu3P=N)TiCH3]+ [B(C6F5)4]- reacts rapidly with H2 to give the analogous cationic hydride [Cp*((tBu3P=N)TiH(THF)n]+ [B(C6F5)4]- (n = 0, 1), which can be trapped and isolated as its THF adduct 1 x THF (n = 1). When generated in the presence of chloro or bromobenzene, 1 undergoes C-X activation or ortho-C-H activation, depending on the amount of dihydrogen present in the reaction medium. At approximately 4 atm of H2, C-X activation is preferred, giving the halocations [Cp*((tBu3P= N)TiX]+ [B(C6F5)4]- (2X) and C6H6/biphenyl mixtures. At lower pressures of H2 (>1 atm), the beta-halophenyl cations [Cp*((tBu3P=N)Ti(2-X-C6H4)]+ [B(C6F5)4]- (3X) are the products isolated. In the absence of H2, these compounds are quite thermally stable, but undergo beta-halogen elimination upon moderate heating, to give 2X (approximately 20%) and compounds 4X which are the result of reaction between 2X and benzyne via addition of the benzyne C-C triple bond across the Ti-N bond of the phosphinimide ligand. Thus, three separate bond activation processes are operative in this system: direct C-X activation, ortho-C-H activation, and indirect C-X activation via beta-halogen elimination. Mechanistic studies on all three processes have been done and support a radical pathway for direct C-X cleavage, sigma-bond metathesis of the ortho-C-H bond of eta(1)-coordinated C6H5X, and beta-halogen elimination from base-free compound 3X.  相似文献   

12.
Treatment of the neutral methyl-Zr-enolate [Cp(2)Zr(Me)[O(tBuO)C=CMe(2)]] (1) with one equivalent of B(C(6)F(5))(3) or [HNMe(2)Ph][B(C(6)F(5))(4)] as a methyl abstractor in THF at 0 degrees C leads to the selective formation of the free ion pair complex [Cp(2)Zr(THF)[O(tBuO)C=CMe(2)]](+) [anion](-) (2) (anion=MeB(C(6)F(5))(3) (-), B(C(6)F(5))(4) (-)), which is relevant to the controlled polymerization of methacrylates. Cation 2 rapidly decomposes at 20 degrees C in THF with release of one equivalent of isobutene to form the cationic Zr-carboxylate species [Cp(2)Zr(THF)(O(2)CiPr)](+) (3), through a proposed intramolecular proton transfer process from the tert-butoxy group to the enolate. The reaction of 1 with one equivalent of B(C(6)F(5))(3) or [HNMe(2)Ph][B(C(6)F(5))(4)] in CH(2)Cl(2) leads to the direct, rapid formation of the dimeric micro-isobutyrato-Zr dicationic species [[Cp(2)Zr[micro-(O(2)CiPr)]](2)](2+) (4), which gives 3 upon dissolution in THF. Contrastingly, when [Ph(3)C][B(C(6)F(5))(4)] is used to generate the cationic Zr-enolate species from 1 in CD(2)Cl(2), a 15:85 mixture of dicationic complexes 4 and [[Cp(2)Zr[micro-(O(2)C-C(Me)=CH(2))]](2)](2+)[B(C(6)F(5))(4)]]2-(5-[B(C(6)F(5))(4)](2)) is obtained quantitatively. The formation of 5 is proposed to arise from initial hydride abstraction from a methyl enolate group by Ph(3)C(+), as supported by the parallel production of Ph(3)CH, and subsequent elimination of methane and isobutene. In addition to standard spectroscopic and analytical characterizations for the isolated complexes 2-5, complexes 4 and 5 have also been structurally characterized by X-ray diffraction studies.  相似文献   

13.
Treatment of Me(2)S·B(C(6)F(5))(n) H(3-n) (n=1 or 2) with ammonia yields the corresponding adducts. H(3)N·B(C(6)F(5))H(2) dimerises in the solid state through N-H···H-B dihydrogen interactions. The adducts can be deprotonated to give lithium amidoboranes Li[NH(2)B(C(6)F(5))(n)H(3-n)]. Reaction of the n=2 reagent with [Cp(2)ZrCl(2)] leads to disubstitution, but [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)] is in equilibrium with the product of β-hydride elimination [Cp(2)Zr(H){NH(2)B(C(6)F(5))(2)H}], which proves to be the major isolated solid. The analogous reaction with [Cp(2)HfCl(2)] gives a mixture of [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)] and the N-H activation product [Cp(2)Hf{NHB(C(6)F(5 )(2)H}]. [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)]·PhMe and [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]·4(thf) exhibit β-B-agostic chelate bonding of one of the two amidoborane ligands in the solid state. The agostic hydride is invariably coordinated to the outside of the metallocene wedge. Exceptionally, [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]?PhMe has a structure in which the two amidoborane ligands adopt an intermediate coordination mode, in which neither is definitively agostic. [Cp(2)Hf{NHB(C(6)F(5))(2)H}] has a formally dianionic imidoborane ligand chelating through an agostic interaction, but the bond-length distribution suggests a contribution from a zwitterionic amidoborane resonance structure. Treatment of the zwitterions [Cp(2)MMe(μ-Me)B(C(6)F(5))(3)] (M=Zr, Hf) with Li[NH(2)B(C(6)F(5))(n)H(3-n)] (n=2) results in [Cp(2) MMe{NH(2)B(C(6)F(5))(2)H}] complexes, for which the spectroscopic data, particularly (1)J(B,H), again suggest β-B-agostic interactions. The reactions proceed similarly for the structurally encumbered [Cp'(2)ZrMe(μ-Me)B(C(6)F(5))(3)] precursor (Cp'=1,3-C(5)H(3)(SiMe(3))(2) , n=1 or 2) to give [Cp'(2)ZrMe{NH(2)B(C(6)F(5))(n)H(3-n)}], both of which have been structurally characterised and show chelating, agostic amidoborane coordination. In contrast, the analogous hafnium chemistry leads to the recovery of [Cp'(2)HfMe(2)] and the formation of Li[HB(C(6)F(5))(3)] through hydride abstraction.  相似文献   

14.
Reduction of Cp*WCl4 afforded the metalated complex (eta6-C5Me4CH2)(dmpe)W(H)Cl (1) (Cp* = C5Me5, dmpe = 1,2-bis(dimethylphosphino)ethane). Reactions with CO and H(2) suggested that 1 is in equilibrium with the 16-electron species [Cp(dmpe)WCl], and 1 was also shown to react with silanes R2SiH2 (R2 = Ph2 and PhMe) to give the tungsten(IV) silyl complexes Cp*(dmpe)(H)(Cl)W(SiHR2) (6a, R2 = Ph2; 6b, R2 = PhMe). Abstraction of the chloride ligand in 1 with LiB(C6F5)4 gave a reactive species that features a doubly metalated Cp ligand, [(eta7-C5Me3(CH2)2)(dmpe)W(H)2][B(C6F5)4] (4). In its reaction with dinitrogen, 4 behaves as a synthon for the 14-electron fragment [Cp*(dmpe)W]+, to give the dinuclear dinitrogen complex ([Cp*(dmpe)W]2(micro-N2)) [B(C6F5)4]2 (5). Hydrosilanes R2SiH2 (R2 = Ph2, PhMe, Me2, Dipp(H); Dipp = 2,6-diisopropylphenyl) were shown to react with 4 in double Si-H bond activation reactions to give the silylene complexes [Cp*(dmpe)H2W = SiR2][B(C6F5)4] (8a-d). Compounds 8a,b (R2 = Ph2 and PhMe, respectively) were also synthesized by abstraction of the chloride ligands from silyl complexes 6a,b. Dimethylsilylene complex 8c was found to react with chloroalkanes RCl (R = Me, Et) to liberate trialkylchlorosilanes RMe2SiCl. This reaction is discussed in the context of its relevance to the mechanism of the direct synthesis for the industrial production of alkylchlorosilanes.  相似文献   

15.
Reaction of [Mo2Cp2(mu-H)(mu-PHR*)(CO)4] with DBU followed by O2 gives the first anionic phosphinidene oxide complex (H-DBU)[MoCp{P(O)R*}(CO)2] (1) (DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene; R* = 2,4,6-C6H2tBu3). This anion displays three different nucleophilic sites located at the O, P, and Mo atoms, as illustrated by the reactions reported. Thus, reaction of 1 with excess HBF4.OEt2 gave the fluorophosphide complex [MoCp(PFR*)(CO)2] via the hidroxophosphide intermediate [MoCp{PR*(OH)}(CO)2]. Related alkoxyphosphide compounds [MoCp{P(OR)R*}(CO)2] (R = Me, C(O)Ph) were prepared by reaction of 1 with [Me3O]BF4 and PhC(O)Cl, respectively, whereas reaction of 1 with MeI or C3H5Br gave the P,O-bound phosphinite complexes [MoCp(kappa2-OPRR*)(CO)2] (R = Me, C3H5). Metal-based electrophiles were found to bind at either O or Mo positions. Thus, reaction of 1 with [ZrCl2Cp2] gave the phosphinidene oxide bridged [MoCp{P(OZrClCp2)R*}(CO)2], whereas reaction with SnPh3Cl gave trans-[MoCp{P(O)R*}(CO)2(SnPh3)], an heterometallic complex having an intact terminal P(O)R* ligand.  相似文献   

16.
A new route for organic polyoxometallic clusters describes the first dumb-bell-like organic polyoxozirconium hydroxide [[(Cp*Zr)4(mu5-O)(mu3-O)2(mu-OH)4]2Zr(mu-O)4] x 2C7H8 (2; Cp* = C5Me5) involving the treatment of the Br?nsted acidic organozirconium hydroxide [(Cp*Zr)6(mu4-O)(mu-O)4(mu-OH)8] x 2C7H8 (1) with organozirconium compounds.  相似文献   

17.
Hydrozirconation of cis-2-butene with Cp*ZrHCl[N(t-Bu)C(Me)N(Et)], generated in situ through hydrogenolysis of Cp*ZrCl(SiMe2Ph)[N(t-Bu)C(Me)N(Et)] (5), proceeds in high yield to produce a 1:2 mixture of the kinetically stable, diastereomeric sec-butyl complexes, 3a and 3b. Hydrozirconation of trans-2-butene under identical conditions provides a 2:1 mixture of 3a and 3b. Isolation of diastereomerically pure 3a was achieved through reaction of Cp*ZrCl2[N(t-Bu)C(Me)N(Et)] (4) with sec-butyllithium to provide a 2:1 ratio of 3a and 3b, followed by fractional crystallization. Crystallographic analysis of 3a establishes the relative configuration of the sec-butyl group with respect to the chiral zirconium center, thereby permitting construction of diastereomeric transition states that explain the origin of high face selectivity in the hydrozirconation of cis-2-butene. Finally, both iodinative zirconium-carbon bond cleavage and insertion of tert-butyl isocyanide into the zirconium-carbon bond of the sec-butyl group of 3a were found to proceed in high yield and with retention of the secondary alkyl structure. Together, these results provide a critical platform upon which efforts directed toward the asymmetric hydrozirconation of alkenes can be based.  相似文献   

18.
The synthesis and solid-state structural characterization of a family of homoleptic and mixed dialkyl d1Ta(IV) complexes of the formula, (eta5-C5Me5)TaR1R2[N(i-Pr)C(Me)N(i-Pr)], where R1 = R2 = i-Bu (3), n-Bu (4), and Et (7), and R1 = Me, R2 = i-Bu (10), neopentyl (Np) (11), are reported, along with those for the cationic d1Ta(IV) complex, {(eta5-C5Me5)TaNp[N(i-Pr)C(Me)N(i-Pr)]}[B(C6F5)4] (12). All of the new compounds displayed a remarkably high degree of solution stability toward beta-hydrogen and beta-methyl eliminations/abstractions. Thermolysis of 3 in toluene at 80 degrees C for 18 h provided the Ta(IV) trimethylenemethane (TMM) complex 13.  相似文献   

19.
The reactions of lithiated diphosphanes with transition metal chlorides constitute a new general entry to phosphinophosphinidene complexes: the reaction of Cp2ZrCl2(Cp = C5H5) with tBu2P-P(SiMe3)Li (molar ratio approximately 1:1) yields [mu-(1,2:2-eta-tBu2P=P)[Zr(Cl)Cp2]2]; the reaction of Cp2ZrCl2 with tBu2P-P(SiMe3)Li (molar ratio approximately 1:2) and an excess of PPhMe2 in DME yields the first terminally bonded phosphinophosphinidene complex, [[Zr(PPhMe2)Cp2](eta1-P-PtBu2)].  相似文献   

20.
The nucleophilic character of a charge neutral, high oxidation d0 zirconium trimethylenemethane (TMM) class of compound of general structure Cp*Zr(TMM)[N(R1)C(Me)N(R2)], 1a (R1 = R2 = i-Pr) and 1b (R1 = t-Bu, R2 = Et), is presented through documentation of its reactivity with a range of alkyl and silyl halides and triflates, including unactivated ones such as ethyl triflate. These results should contribute to efforts directed toward expanding the synthetic chemist's toolbox of synthetic methods for the construction of complex organic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号