首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of complex formation between palladium(II) acetate, and 1,1’-bis(diphenylphosphino)ferrocene, dppf, in two different deuterated solvents CDCl3 and DMSO-d6 were investigated using 31P NMR spectroscopy. The mole ratio and the 31P-chemical shifts in DMSO-d6 solution revealed the formation of an intermediate, which is gradually converted into the more stable [Pd(dppf)OAc)2] species with a dppf acting as a chelate ligand. In the chloroform solution however, the interaction of metal ion and the ligand resulted directly in the formation of [Pd(dppf)OAc)2] species with a chelating dppf. The rate constant for the complexation reaction was evaluated from computer fitting of the corresponding integration-time data.  相似文献   

2.
Proton NMR was used to study the complexation reaction of Ag+ with octathia-24-crown-8 (OT24C8) in a number of binary dimethylsulfoxide (DMSO)–nitrobenzene (NB) mixtures at different temperatures. In all cases, the exchange between free and complexed OT24C8 was fast on the NMR time scale and only a single population average 1H signal was observed. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of DMSO in the solvent mixtures. The enthalpy and entropy values for the complexation reaction were evaluated from the temperature dependence of formation constants. In all solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized. The TΔS° versus ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reaction.  相似文献   

3.
The complexation reaction between uranyl (II) nitrate, and N-methyliminobis(methylenephosphonic acid) (MIDPH) was investigated in two different binary solvent mixtures of D2O-DMSO-d6 at various temperatures using 31P NMR spectroscopy. The exchange between the free ligand and the 1:1 complexed ligand was slow on the NMR timescale and two 31P NMR signals were observed. The formation constant of the resulting complex was evaluated from integration of the two 31P NMR signals. The values of thermodynamic parameters of the resulting complex (ΔH, ΔS and ΔG) were determined from the temperature dependence of the formation constants. In the two solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized.  相似文献   

4.
5.
A new series of bimetallic bis(diphenylphosphino)acetylene-bridged copper(I) 1,10-phenanthroline complexes, [Cu2(dppa)2(L)2](BF4)2; L?=?1,10-phenanthroline (1); 4-methyl-1,10-phenanthroline (2); 4,7-dimethyl-1,10-phenanthroline (3); and 2,9-dimethyl-1,10-phenanthroline (4), have been prepared and characterized by spectroscopic methods. The X-ray structures of 1 and 4 were determined. The structures consist of centrosymmetric bimetallic 10-membered chair-like dimetallacycles. In 1, intermolecular C–H?π interactions result in bending of the phenanthroline ligand and sterically induced lengthening of one Cu–P bond. In 1–4, the 31P NMR downfield coordination shift, relative to the free ligand, correlates with the basic strength of the 1,10-phenanthroline ligands.  相似文献   

6.
Complexes of the type [Pt R2 (dppma-PP′)] (R─Me, Et, Ph, CH2Ph, C6H4 Me-p, C6H4OMe-2, CH2CMe3, 1-naphthyl, C6H4Me-o, dppma = Ph2PNMe PPh2) have been prepared from [PtCl2, (dppma-PP′)] and the corresponding alkyl-lithium or Grignard reagents. Equilibrium constants, k, for the conversion of [PtR2 (dppma-PP′)] into cis-[PtR2(dppma-P)2] with dppma were studied using 31P NMR spectroscopy at room temperature. Equilibrium is rapidly established for R─C6H4-Me-o, at 20°C. Complex of the type cis-[PtR2 (dppma-P)2] was isolated R─C6H4 Me-o. The complexes [PtMe2(dppma-P)2] and [Pt(o-methoxyphenyl)2(dppma-P)2] were prepared, but unfortunately decomposed once isolated, the only evidence for its formation being from 31P-{1H} NMZR spectroscopy. The o-tolyl or 1-naphthyl complexes exist as syn-anti mixtures in solution, due to restricted rotation around the platinum aryl bonds. Treatment of several complexes of the type [PtR2(dppma-PP′)] with MeI gives [PtR2Me(I)(dppma-PP′)] with trans addition of MeI. Treatment of [PtR2(dppma-PP′)] with HCl gives [Pt Cl (R) (dppma-PP′)] for R─C6H2Me3-2,4,6, C6H4-CH3-2, C6H4-Me-4, Me, 1-naphthyl. The 1H, 31P NMR parameters for these complexes are discussed. Attempted preparation of complexes of the type [PtR2 (dppma-P)2M] (R─C6H4-Me-2, Me CN-C6H4-Me-4); M─Pd, Pt, Au,) are reported.  相似文献   

7.
The reactions of phosphine derivatives of diallyl isocyanurates with palladium(ii) dichloride lead to the formation of complexes, whose structure, composition, and stability depend on the length of the methylene chain between the isocyanurate and diphenylphosphine fragments in the ligand. 1,3-Diallyl-5-[5′-(diphenylphosphino)pentyl and 10′-(diphenyl-phosphino)decyl] isocyanurates with PdCl2 form monomeric L2PdCl2 trans-complexes in which P atoms of the ligands participate in coordination with the metal. 1,3-Diallyl-5-[2′-(diphenylphosphino)ethyl] isocyanurate with PdCl2 forms a dimeric (LPdCl2)2 complex, which decomposes in a solution to the monomer including solvent molecule into the coordination sphere of the metal. The reactions of 1,3-diallyl-5-[4′-(diphenylphosphino)butyl] isocyanurate and 1,3-diallyl-5-[6′-(diphenylphosphino)hexyl] isocyanurate with PdCl2 give monomeric chelate LPdCl2 complexes in which one of the allyl groups of the isocyanurate cycle participates in coordination with the central ion along with the phosphorus atom. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1859–1865, September, 1998.  相似文献   

8.
Complexes of beryllium chloride and nitrate with (Me2N)2P(O)F were characterized in solution by multinuclear NMR spectroscopy and in some cases by IR spectroscopy and conductimetry. 31P and 19F NMR spectra were informative of changes associated with complex formation revealing resonances consistent with different species in solution and suggest an equilibrium between these species in both beryllium derivatives. These compounds show narrow lines in the solution 9Be NMR spectra, indicative of a highly symmetric environment for beryllium. The presence of the different species was more pronounced in beryllium chloride complexes. The results are compared to those reported in the literature for hexamethylphosphoramide (HMPA).  相似文献   

9.
This perspective describes the use of 31P NMR spectroscopy in an ongoing research project on enantioselective P−C bond formation catalyzed by platinum and palladium Duphos complexes. This technique was used to characterize catalyst precursors, intermediates and products, to determine equilibrium and rate constants, and to measure the enantiomeric excess (ee) of the P-stereogenic phosphine products. Applications of 31P NMR spectroscopy in problem-solving and identifying unexpected products, as well as the analysis of an unusual and esthetically pleasing spectrum, are also discussed.  相似文献   

10.
A nonradioactive 31P nuclear magnetic resonance (NMR) spectroscopy protocol has been developed and used to investigate in vitro autophosphorylation of insulin receptors. Optimum experimental conditions have been explored, and the effects of Mn2+ and phosphocreatine (PCr) on the determination of the phosphorylation reaction have been assayed. The method was used to monitor the time courses of the phosphorylation reaction in solution. The results from this NMR study were in agreement with observations of insulin receptor phosphorylation made by using Western blotting.   相似文献   

11.
[CpRu(dppf)Cl] (Cp=η5-C5H5) (1) and [(HMB)Ru(dppf)Cl]PF6 ((HMB)=η6-C6Me6) (3) react with different donor ligands to give rise to N-, P- and S-bonded complexes. The stoichiometric reactions of 1 and 3 with NaNCS give the mononuclear complexes [CpRu(dppf)(NCS)] (2) and [(HMB)Ru(dppf)(NCS)]PF6 (4), respectively, in yields above 80%, while 3 also gives a dppf-bridged diruthenium complex [(HMB)Ru(NCS)2]2(μ-dppf) (5) in 67% yield from reaction with four molar equivalents of NaNCS. Compound 5 is also obtained in 70% yield from the reaction of 4 with excess NaNCS. With CH3CN in the presence of salts, both 1 and 3 give their analogous solvento derivatives [CpRu(dppf)(CH3CN)]BPh4 (6) and [(HMB)Ru(dppf)(CH3CN)] (PF6)2 (7). With phosphines, the reaction of 1 gives chloro-displaced complexes [(CpRu(dppf)L]PF6 (L =PMe3 (8), PMe2Ph(9)), whereas the reaction of 3 with PMe2Ph leads to substitution of dppf, giving [(HMB)Ru(PMe2Ph)2Cl] PF6 (10). The reaction of 1 with NaS2CNEt2 gives a dinuclear dppf-bridged complex [{CpRu(S2CNEt2)}2(μ-dppf)] (11), whereas that of 3 results in loss of the HMB ligand giving a mononuclear complex [Ru(dppf)(S2CNEt2)2] (12). With elemental sulfur S8, 1 is oxidized to give a dinuclear CpRuIII dppf-chelated complex [{CpRu(dppf)}2(μ-S2)](BPh4)Cl (13), whereas 3 undergoes oxidation at the ligand, giving a dppf-displaced complex [(HMB)Ru(CH3CN)2Cl]PF6 (14) and free dppfS2. The structures of 1, 2, 5-9, 11, 13 and 14 were established by X-ray single crystal diffraction analyses. Of these, 5 and 11 both contain a dppf-bridge between RuII centers, while 13 is a dinuclear CpRuIII disulfide-bridged complex; all the others are mononuclear. All complexes obtained were also spectroscopically characterized.  相似文献   

12.
《Analytical letters》2012,45(8):1303-1314
Abstract

Phosphoramide mustard (PM), a key active metabolite of the widely used anticancer drug cyclophosphamide (CP), can exist in several closely-related ionized, cyclized and substituted forms. We have developed a high pressure liquid chromatographic (HPLC) method for analysing serum concentrations of PM in order to relate these serum concentrations to toxicity and efficacy of treatment of CP. 31p NMR spectroscopy is used to verify the HPLC peak homology of the proposed PM peak.  相似文献   

13.

The two octahedral complexes SnCl4·2(O)PF(NR2)2 (R = Me or Et) were prepared from reaction of SnCl4 with the ligand (R2N)2P(O)F in anhydrous CHCl3. The new adducts have been characterized by elemental analysis, IR, and multinuclear (119Sn, 31P, 19F, and 1H) NMR spectroscopy. The NMR data show that the adducts exist in solution as a mixture of cis and trans isomers with markedly different proportions. When compared with previously described hexamethylphosphoramide (HMPA) and trimethylphosphate (TMPA) analogues, our results indicate that the cis isomer is the predominant species in solution. Low temperature 31P and 119Sn NMR spectra show that the compounds partially dissociate in dichloromethane.  相似文献   

14.
A new palladium(II) complex with methionine sulfoxide was synthesized and characterized by a set of chemical and spectroscopic techniques. Elemental and mass spectrometry analyses of the solid complex fit to the composition [Pd(C5H10NO3S)2].H2O. 13C NMR, [1H-15N] NMR and infrared spectra indicate coordination of the amino acid to Pd(II) through the carboxylate and amino groups in a square planar geometry. The complex is soluble in water. Biological activity was evaluated by cytotoxic analysis using HeLa cells. Determination of cell death was assessed using a tetrazolium salt colorimetric assay, which reflects the cells viability. After incubation for 48 h, 20% of cell death was achieved at a concentration of 200 micromol L-1 of the complex.  相似文献   

15.
The interaction of silver triflate (OTf=SO3(CF3)) and dppf [(C5H4PPh2)2Fe)] gave different complexes, depending on the stoichiometric proportions and reaction conditions. Under limiting dppf conditions, three different forms (1-3) of [Ag2(OTf)2(dppf)]x were isolated. Single crystal X-ray diffraction analyses showed that the structure of 1 (x=2n) consists of a 2-D polymer comprising a tetra-silver basic unit, while that of 2 (x=2) possesses a discrete tetra-silver framework and that of 3 (x=n) is a linear polymer based on a di-silver repeating unit. The structures are supported by bridging dppf ligands and triflate groups. The crystal lattices of the compounds are stabilized by extensive intermolecular C-H?X hydrogen bonding (H=ring proton of Cp or Ph of dppf; X=O or F of OTf). [Ag(dppf)(OTf)] (4) and the structurally characterized mononuclear [Ag(dppf)2](OTf) (5) were the sole products obtained from treatment of AgOTf with dppf in molar ratios of 1:1 and 1:2, respectively.  相似文献   

16.
A convenient synthesis of new square planar dinuclear palladium(II) terephthaldehyde bis(thiosemicarbazone) complex has been described. The compositions of the complex have been established by elemental analysis, spectral methods and single crystal X-ray crystallographic technique. The new complex acts as an active recyclable homogeneous catalyst for the Mizoroki-Heck reaction of electron deficient (activating) and electron rich (deactivating) aryl halides with various olefins under optimized conditions.  相似文献   

17.
A complex mixture of fluoro-polyphosphates (FPPs) and polyphosphates was prepared by heating a mixture of NaF and sodium tripolyphosphate (STPP) at 600 °C in nitrogen atmosphere. Two-dimensional 31P-19F heteronuclear correlation spectroscopy (HETCOR) NMR was developed in identifying the atomic connection between F and P in the mixed FPPs. 19F, 31P and 31P-31P correlation spectroscopy (COSY) NMR methods were employed to identify the components of the mixture and measure the chain length of each FPP ingredient. NMR results clearly demonstrated that the mixture contains four kinds of fluoro-phosphates with different chain length of polyphosphate, which are monofluoro-phosphate (MFP), monofluoro-dipolyphosphate (MFDPP), monofluoro-tripolyphosphate (MFTPP) and difluoro-tripolyphosphate (DFTPP). Other phosphates and polyphosphates also were found in the mixture.  相似文献   

18.
Ruthenium(II) and palladium(II) complexes [Ru(DMSO)(L)Cl2] and [Pd(L)Cl]Cl, where L = 2,6-bis(pyrazol-1-yl)pyridine (bpp) or 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (bdmpp) have been synthesized. All complexes were characterized by elemental analysis, IR, 1H NMR, UV-Vis, and cyclic voltammetry measurements.  相似文献   

19.
采用NMR方法考察了室温和低温(-78~60℃)下Pd2X2(dpm)2(X=NCO-,CH3CO2-,SCN-和NO3-,dpm=Ph2PCH2PPh2)与H2S在CD2Cl2或CDCl3中的反应。结果表明,在X=NCO-和CH3CO2-的情况下,H2S优先与这些Pd配合物的阴离子作用生成相应的共轭酸HX和Pd2(SH)2(dpm)2,后者在H2S存在下又进一步转化为Pd2(SH)2(dpm)2(μ-S);当X=SCN-和NO3-时,反应则生成结构可能为[Pd2(H)(SH)(μ-SH)(dpm)2]+的双核Pd配合物。  相似文献   

20.
S-Alkyl (R = benzyl, methyl, ethyl, propyl and butyl) derivatives of thiosalicylic acid and the corresponding palladium(II) complexes were prepared and their structures were proposed on the basis of infrared, 1H and 13C NMR spectroscopy. The cis geometrical configurations of the isolated complexes were proposed on the basis of an X-ray structural study of the bis(S-benzyl-thiosalicylate)-palladium(II), [Pd(S-bz-thiosal)2] complex.Antimicrobial activity of the tested compounds was evaluated by determining the minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) in relation to 26 species of microorganisms. The tested ligands, with a few exceptions, show low antimicrobial activity. The palladium(II) complexes, [Pd(S-R-thiosal)2], have statistically significant higher activity than the corresponding ligands. The complexes [Pd(S-et-thiosal)2] and [Pd(S-pro-thiosal)2] displayed the strongest activity amongst the all tested compounds. The palladium(II) complexes show selective and moderate antibacterial activity and significant antifungal activity. The most sensitive were Aspergillus fumigatus and Aspergillus flavus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号