首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effect of A-type cranberry proanthocyanidins (AC-PACs) on osteoclast formation and bone resorption activity. The differentiation of human pre-osteoclastic cells was assessed by tartrate-resistant acid phosphatase (TRAP) staining, while the secretion of interleukin-8 (IL-8) and matrix metalloproteinases (MMPs) was measured by ELISA. Bone resorption activity was investigated by using a human bone plate coupled with an immunoassay that detected the release of collagen helical peptides. AC-PACs up to 100 μg/mL were atoxic for osteoclastic cells. TRAP staining evidenced a dose-dependent inhibition of osteoclastogenesis. More specifically, AC-PACs at 50 μg/mL caused a 95% inhibition of RANKL-dependent osteoclast differentiation. This concentration of AC-PACs also significantly increased the secretion of IL-8 (6-fold) and inhibited the secretion of both MMP-2 and MMP-9. Lastly, AC-PACs (10, 25, 50 and 100 μg/ml) affected bone degradation mediated by mature osteoclasts by significantly decreasing the release of collagen helical peptides. This study suggests that AC-PACs can interfere with osteoclastic cell maturation and physiology as well as prevent bone resorption. These compounds may be considered as therapeutic agents for the prevention and treatment of periodontitis.  相似文献   

2.
3.
The medicinal plant noni (Morinda citrifolia) is widely dispersed throughout Southeast Asia, the Caribbean, and Australia. We previously reported that fermented Noni could alleviate atopic dermatitis (AD) by recovering Th1/Th2 immune balance and enhancing skin barrier function induced by 2,4-dinitrochlorobenzene. Noni has a high deacetylasperulosidic acid (DAA) content, whose concentration further increased in fermented noni as an iridoid constituent. This study aimed to determine the anti-AD effects and mechanisms of DAA on HaCaT, HMC-1, and EOL-1 cells. DAA inhibited the gene expression and secretion of AD-related cytokines and chemokines including interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-25, IL-33, thymic stromal lymphopoietin, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, thymus and activation-regulated chemokine, macrophage-derived chemokine, and regulated upon activation, normal T cell expressed and secreted, in all cells, and inhibited histamine release in HMC-1 cells. DAA controlled mitogen-activated protein kinase phosphorylation levels and the translocation of nuclear factor-kappa light chain enhancer of activated B cells into the nucleus by inhibiting IκBα decomposition in all the cells. Furthermore, DAA increased the expression of proteins involved in skin barrier functions such as filaggrin and involucrin in HaCaT cells. These results confirmed that DAA could relieve AD by controlling immune balance and recovering skin barrier function.  相似文献   

4.
In addition to being the primary cause of skin cancer, UV radiation is immune suppressive and there appears to be a link between the ability of UV to suppress the immune response and induce skin cancer. Cytokines made by UV-irradlated keratinocytes play an essential role in activating immune suppression. In particular, we have found that keratinocyte-derlved interleukin (IL)-10 is responsible for the systemic impairment of antigenpresenting cell function and the UV-induced suppression of delayed-type hypersensitivity (DTH). Antigen presentation by splenic adherent cells isolated from UV-irradiated mice to T helper-1 type T (Th1) cells is suppressed, whereas antigen presentation to T helper-2 type T (Th2) cells is enhanced. The enhanced antigen presentation to Th2 cells and the impaired presentation to Th1 cells can be reversed in vivo by injecting the UV-irradiated mice with monoclonal anti-IL-10 antibody. Furthermore, immune suppression can be transferred from UV-irradiated mice to normal recipients by adoptive transfer of T cells. Injecting the recipient mice with anti-IL-4 or anti-IL-10 prevents the transfer of immune suppression, suggesting the suppressor cells are Th2 cells. In addition, injecting UV-irradiated mice with IL-12, a cytokine that has been shown to be the primary inducer of Th1 cells, and one that prevents the differentiation of Th2 cells in vivo, reverses UV-induced immune suppression. These findings support the hypothesis that UV exposure activates IL-10 secretion, which depresses the function of Th1 cells, while enhancing the activity of Th2 cells.  相似文献   

5.
Most of the previous studies on immune dysregulation in end-stage renal disease (ESRD) have focused on T cell immunity. We investigated B cell subpopulations in ESRD patients and the effect of hemodialysis (HD) on B cell-associated immune profiles in these patients. Forty-four ESRD [maintenance HD patients (n = 27) and pre-dialysis patients (n = 17)] and 27 healthy volunteers were included in this study. We determined the percentage of B cell subtypes, such as mature and immature B cells, memory B cells, and interleukin (IL)-10+ cells, as well as B cell-producing cytokines (IL-10, IL-4 and IL-21) by florescent activated cell sorting (FACS). B cell-associated gene expression was examined using real-time PCR and B cell producing cytokines (IL-10, IL-4 and IL-21) were determined using an enzyme- linked immunosorbent assay (ELISA). The percentage of total B cells and mature B cells did not differ significantly among the three groups. The percentages of memory B cells were significantly higher in the pre-dialysis group than in the HD group (P < 0.01), but the percentage of immature B cells was significantly lower in the pre-dialysis group than in the other groups. The percentages of IL-10-expressing cells that were CD19+ or immature B cells did not differ significantly (P > 0.05) between the two subgroups within the ESRD group, but the serum IL-10 concentration was significantly lower in the pre-dialysis group (P < 0.01). The results of this study demonstrate significantly altered B cell-associated immunity. Specifically, an imbalance of immature and memory B cells in ESRD patients was observed, with this finding predominating in pre-dialysis patients.  相似文献   

6.
7.
Psoriasis is one of the most common immune-mediated chronic inflammatory skin diseases. However, little is known about the molecular mechanism underlying the immunological circuits that maintain innate and adaptive immune responses in established psoriasis. In this study, we found that the Pellino1 (Peli1) ubiquitin E3 ligase is activated by innate pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), and is highly upregulated in human psoriatic skin lesions and murine psoriasis-like models. Increased Peli1 expression is strongly correlated with the immunopathogenesis of psoriasis by activating hyperproliferation of keratinocytes in the S and G2/M phases of the cell cycle and promoting chronic skin inflammation. Furthermore, Peli1-induced psoriasis-like lesions showed significant changes in the expression levels of several T helper 17 (Th17)-related cytokines, such as IL-17a, IL-21, IL-22, IL-23, and IL-24, indicating that overexpression of Peli1 resulted in the sequential engagement of the Th17 cell response. However, the overexpression of Peli1 in T cells was insufficient to trigger psoriasis, while T cells were indispensable for disease manifestation. In summary, our findings demonstrate that Peli1 is a critical cell cycle activator of innate immunity, which subsequently links Th17 cell immune responses to the psoriatic microenvironment.Subject terms: Chronic inflammation, Immunoproliferative disorders  相似文献   

8.
9.
Recent experiments demonstrated that atherosclerosis is a Th1 dominant autoimmune condition, whereas Th2 cells are rarely detected within the atherosclerotic lesions. Several studies have indicated that Th2 type cytokines could be effective in the reduction and stabilization of atherosclerotic plaque. Therefore, the modulation of the adaptive immune response by shifting immune responses toward Th2 cells by a novel vaccine could represent a promising approach to prevent from progression and thromboembolic events in coronary artery disease. In the present study, an in silico approach was applied to design a novel multi-epitope vaccine to elicit a desirable immune response against atherosclerosis. Six novel IL-4 inducing epitopes were selected from HSP60 and calreticulin proteins. To enhance epitope presentation, IL-4 inducing epitopes were linked together by AAY and HEYGAEALERAG linkers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Moreover, cholera toxin B (CTB) was employed as an adjuvant. A multi-epitope construct was designed based on predicted epitopes which was 320 residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this chimeric protein were analyzed using bioinformatics tools and servers. Based on bioinformatics analysis, a soluble, and non-allergic protein with 35.405 kDa molecular weight was designed. Expasy ProtParam classified this chimeric protein as a stable protein. In addition, predicted epitopes in the chimeric vaccine indicated strong potential to induce B-cell mediated immune response and shift immune responses toward protective Th2 immune response. Various in silico analyses indicate that this vaccine is a qualified candidate for improvement of atherosclerosis by inducing immune responses toward T helper 2.  相似文献   

10.
Exosomes are small membrane vesicles secreted from various types of cells. Tumor-derived exosomes contain MHC class I molecules and tumor-specific antigens, receiving attention as a potential cancer vaccine. For induction of efficient anti-tumor immunity, CD4+ helper T cells are required, which recognize appropriate MHC class II-peptide complexes. In this study, we have established an MHC class II molecule-expressing B16F1 murine melanoma cell line (B16F1- CIITA) by transduction of the CIITA (Class II transactivator) gene. Exosomes from B16-CII cells (CIITA- Exo) contained a high amount of MHC class II as well as a tumor antigen TRP2. When loaded on dendritic cells (DCs), CIITA-Exo induced the increased expression of MHC class II molecules and CD86 than the exosomes from the parental cells (Exo). In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced the splenocyte proliferation and IL-2 secretion. Consistently, compared to B16-Exo, CIITA-Exo induced the increased mRNA levels of inflammatory cytokines such as TNF-α, chemokine receptor CCR7 and the production of Th1-polarizing cytokine IL-12. A tumor preventive model showed that CIITA-Exo significantly inhibited tumor growth in a dose-dependent manner. Ex vivo assays using immunized mice demonstrated that CIITA-Exo induced a higher amount of Th1-polarized immune responses such as Th1-type IgG2a antibodies and IFN-γ cytokine as well as TRP2-specific CD8+ T cells. A tumor therapeutic model delayed effects of tumor growth by CIITA-Exo. These findings indicate that CIITA-Exo are more efficient as compared to parental Exo to induce anti-tumor immune responses, suggesting a potential role of MHC class II-containing tumor exosomes as an efficient cancer vaccine.  相似文献   

11.
The main purpose of this study was to investigate whether the blockade of the interaction between the receptor activator of nuclear factor-κB (NF-ĸB) ligand (RANKL) and its receptor RANK as well as the blockade of NF-κB inhibitor kinase (IKK) and of NF-κB translocation have the potential to suppress the pathogenesis of allergic asthma by inhibition and/or enhancement of the production by CD4+ and CD8+ T cells of important cytokines promoting (i.e., IL-4 and IL-17) and/or inhibiting (i.e., IL-10 and TGF-β), respectively, the development of allergic asthma. Studies using ovalbumin(OVA)-immunized mice have demonstrated that all the tested therapeutic strategies prevented the OVA-induced increase in the absolute number of IL-4- and IL-17-producing CD4+ T cells (i.e., Th2 and Th17 cells, respectively) indirectly, i.e., through the inhibition of the clonal expansion of these cells in the mediastinal lymph nodes. Additionally, the blockade of NF-κB translocation and RANKL/RANK interaction, but not IKK, prevented the OVA-induced increase in the percentage of IL-4-, IL-10- and IL-17-producing CD4+ T cells. These latter results strongly suggest that both therapeutic strategies can directly decrease IL-4 and IL-17 production by Th2 and Th17 cells, respectively. This action may constitute an important mechanism underlying the anti-asthmatic effect induced by the blockade of NF-κB translocation and of RANKL/RANK interaction. Thus, in this context, both these therapeutic strategies seem to have an advantage over the blockade of IKK. None of the tested therapeutic strategies increased both the absolute number and frequency of IL-10- and TGF-β-producing Treg cells, and hence they lacked the potential to inhibit the development of the disease via this mechanism.  相似文献   

12.
Osteoclasts, together with osteoblasts, control the amount of bone tissue and regulate bone remodeling. Osteoclast differentiation is an important factor related to the pathogenesis of bone-loss related diseases. Reactive oxygen species (ROS) acts as a signal mediator in osteoclast differentiation. Simvastatin, which inhibits 3-hydroxy-3-methylglutaryl coenzyme A, is a hypolipidemic drug which is known to affect bone metabolism and suppresses osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In this study, we analyzed whether simvastatin can inhibit RANKL-induced osteoclastogenesis through suppression of the subsequently formed ROS and investigated whether simvastatin can inhibit H2O2-induced signaling pathways in osteoclast differentiation. We found that simvastatin decreased expression of tartrate-resistant acid phosphatase (TRAP), a genetic marker of osteoclast differentiation, and inhibited intracellular ROS generation in RAW 264.7 cell lines. ROS generation activated NF-κB, protein kinases B (AKT), mitogen-activated protein kinases signaling pathways such as c-JUN N-terminal kinases, p38 MAP kinases as well as extracellular signal- regulated kinase. Simvastatin was found to suppress these H2O2-induced signaling pathways in osteoclastogenesis. Together, these results indicate that simvastatin acts as an osteoclastogenesis inhibitor through suppression of ROS-mediated signaling pathways. This indicates that simvastatin has potential usefulness for osteoporosis and pathological bone resorption.  相似文献   

13.
Receptor activator of NFkappaB ligand (RANKL) is known as a key regulator of osteoclastogenesis. However, the fact that fibroblasts and periodontal ligament cells express RANKL in response to bacterial substances, suggests that RANKL may have evolved as a part of the immunity to infection. As RANKL increases the survival and activity of dendritic cells, it may have similar effects on macrophages. To address this issue, we studied the effect of RANKL on various functions of macrophages using mouse bone marrow derived macrophages. RANKL enhanced the survival of macrophages and up-regulated the expression of CD86. RANKL-treated macrophages showed increased allogeneic T cell activation and phagocytic activity compared to control cells. In addition, RANKL increased the expression of TNFalpha, MCP-1, and IL-6 but not of IL-10, IL-12, IFN-gamma, and iNOS. Collectively, RANKL augmented the activity of macrophages especially as antigen presenting cells, suggesting its new role in immune regulation.  相似文献   

14.
Vitamins and bioactives, which are constituents of the food chain, modulate T lymphocyte proliferation and differentiation, antibody production, and prevent inflammation and autoimmunity. We investigated the effects of vitamins (vitamin A (VA), D (VD), E (VE)) and bioactives (i.e., resveratrol (Res), epigallocatechin-3-gallate (EGCG)) on the adaptive immune response, as well as their synergistic or antagonistic interactions. Freshly isolated T lymphocytes from healthy individuals were activated with anti-CD3/CD28 antibodies for 4–5 days in the presence of bioactives and were analyzed by cytofluorometry. Interleukins, cytokines, and chemokines were measured by multiple ELISA. Gene expression was measured by quantitative RT-PCR. Res and EGCG increased CD4 surface intensity. EGCG led to an increased proportion of CD8+ lymphocytes. Anti-CD3/CD28 activation induced exuberant secretion of interleukins and cytokines by T lymphocyte subsets. VD strongly enhanced Th2 cytokines (e.g., IL-5, IL-13), whereas Res and EGCG favored secretion of Th1 cytokines (e.g., IL-2, INF-γ). Res and VD mutually influenced cytokine production, but VD dominated the cytokine secretion pattern. The substances changed gene expression of interleukins and cytokines in a similar way as they did secretion. Collectively, VD strongly modulated cytokine and interleukin production and favored Th2 functions. Resveratrol and EGCG promoted the Th1 response. VA and VE had only a marginal effect, but they altered both Th1 and Th2 response. In vivo, bioactives might therefore interact with vitamins and support the outcome and extent of the adaptive immune response.  相似文献   

15.
The effects of laser light on the immune system have not been extensively characterized. Low-power laser sources, such as the helium-neon (He-Ne) laser with a wavelength of 632.8 nm, have been found to produce photobiological effects with evidence of interference with immunological functions. We have investigated the effects of He-Ne laser irradiation on Ficoll-Hypaque-isolated human peripheral blood mononuclear cells (PBMC). Cultured cells were irradiated for various times at two selected intensities and then stimulated with different mitogens. The rate of incorporation of 3H-thymidine into the DNA of stimulated cells decreased with increasing energy density. The levels of interleukin-1 alpha (IL-1 alpha), interleukin-2 (IL-2), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) in supernatants of the cultures were determined (irradiated either before or after stimulation). When stimulating cells after irradiation, significantly increased levels of all cytokines were detected after 30 min of irradiation (18.9 J cm-2), whereas after 60 min of irradiation (37.8 J cm-2) cytokine levels were found to be significantly decreased.  相似文献   

16.
We have developed a silicon photonic biosensing chip capable of multiplexed protein measurements in a biomolecularly complex cell culture matrix. Using this multiplexed platform combined with fast one-step sandwich immunoassays, we perform a variety of T cell cytokine secretion studies with excellent time-to-result. Using 32-element arrays of silicon photonic microring resonators, the cytokines interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-5 (IL-5), and tumor necrosis factor alpha (TNFα) were simultaneously quantified with high accuracy in serum-containing cell media. Utilizing this cytokine panel, secretion profiles were obtained for primary human Th0, Th1, and Th2 subsets differentiated from na?ve CD4+ T cells, and we show the ability to discriminate between lineage commitments at early stages of culture differentiation. We also utilize this approach to probe the temporal secretion patterns of each T cell type using real-time binding analyses for direct cytokine quantitation down to ~100 pM with just a 5 min-analysis.  相似文献   

17.
We have tested the hypothesis that exposure to ultraviolet light would inhibit T helper-1 (Th1) responses and stimulate T helper-2 (Th2) responses, and that thus in a mouse model of allergic (i.e. extrinsic) asthma (using ovalbumin [OVA] as the allergen) increased symptoms would be observed, while in a model of Th1-dependent occupational asthma (in which picryl chloride is the allergen) decreased symptoms would be observed. Whereas reduced interferon (IFN)-gamma production, decreased inflammatory responses in the airways, and reduced airway reactivity to nonspecific stimuli were observed in UV-preexposed picryl chloride sensitized and challenged mice, the results in the OVA model were less clear. Increased interleukin (IL)-10 production as a result of UV exposure was observed, together with unchanged IL-4 and IFN-gamma. In addition, decreased OVA-specific immunoglobin, IgG1 and IgE, titers were noted, as well as decreased nonspecific airway hyperreactivity. Eosinophilic inflammatory responses were not influenced. The results indicate that UV exposure can have systemic effects that influence ongoing immune responses in the respiratory tract. The effects are not only restricted to immune responses that are predominantly Th1 dependent (i.e. pulmonary delayed-type hypersensitivity and IFN-gamma production in response to picryl chloride) but also to immune response that are predominantly Th2 dependent, i.e. decreased specific IgE titers.  相似文献   

18.
19.
20.
To explore agents for differentiation therapy of leukemias, various combinations of cytokines and low-molecular-weight inducers were examined for differentiation-inducing activity toward three kinds of human leukemia-derived cell lines. The strongest differentiation inducing activity on promyelocytic HL60 cells and histiocytic U937 cells was obtained by combining recombinant tumor necrosis factor (rTNF), interferon-gamma (IFN-gamma), retinoic acid (RA), and 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3). For myeloblastic ML1 cells, the combination of rTNF, IFN-gamma, and RA had the strongest differentiation-inducing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号