首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of numerical simulations were performed to investigate the distribution and deposition properties of particles in turbulent flows bounded by permeable walls using the Large Eddy Simulation (LES) with a Lagrangian trajectory approach. The wall permeation speeds were taken from 10−4 to 10−2 of the bulk velocity. The directions of the permeation speed were the same at both walls, and they were inward on one wall but outward on the other wall to reserve the fluid mass. Particles with Stokes number (respecting viscous time scale) around 0.1, 1 and 10 were released in the fully developed turbulent channel flow. The particle–particle interaction and the retroaction from particles to the fluid were neglected. The fluid-phase turbulence statistical properties and particle's transport characteristics by vortexes were then analyzed in details. If the wall permeation exists, the turbulence intensities will be depressed close to the outward permeable wall but increased near the inward permeable wall. Not influenced by the wall permeation, the suspended particles with St+ ∼O(1) tend to accumulate in the less vortical zones away from the wall, while those particles in the flow regions near the outward permeable wall will distribute disregarding of the vorticity. The turbulence structures near the outward permeable wall are found to exert promotional effects on the particle deposition rate, but such effects are different for particles with various Stokes number. A distribution tendency of streamwise streaks for the deposited particles is also found on the wall imposed by the high outward permeation speed and the clustering deposition pattern is more obvious with increasing particle Stokes number.  相似文献   

2.
The effect of Lorentz force on particle transport and deposition is studied by using direct numerical simulation of turbulent channel flow of electrically conducting fluids combined with discrete particle simulation of the trajectories of uncharged, spherical particles. The magnetohydrodynamic equations for fluid flows at low magnetic Reynolds numbers are adopted. The particle motion is determined by the drag, added mass, and pressure gradient forces. Results are obtained for flows with particle ensembles of various densities and diameters in the presence of streamwise, wall-normal or spanwise magnetic fields. It is found that the particle dispersion in the wall-normal and spanwise directions is decreased due to the changes of the underlying fluid turbulence by the Lorentz force, while it is increased in the streamwise direction. The particle accumulation in the near-wall region is diminished in the magnetohydrodynamic flows. In addition, the tendency of small inertia particles to concentrate preferentially in the low-speed streaks near the walls is strengthened with increasing Hartmann number. The particle transport by turbophoretic drift and turbulent diffusion is damped by the magnetic field and, consequently, particle deposition is reduced.  相似文献   

3.
Particle migration in a horizontal flow of dilute suspension through a vertical slot with porous walls is studied using the two-continua approach. The lateral migration is induced by two opposite effects: an inertial lift force due to particle settling and directed toward the slot centre-line, and a drag due to leak-off entraining particles toward the walls. An expression for the inertial lift on a settling particle in a horizontal channel flow found recently is generalized to the case of a low leak-off velocity. The evolution of an initial uniform particle concentration profile is studied within the full Lagrangian approach. Four migration regimes are found differing by the direction of particle migration and numbers of equilibrium positions. Conditions of the regime change and a critical value of dimensionless leak-off velocity for particle deposition on the walls are obtained analytically. Suspension flows with zones where the particle concentration is zero or increases infinitely, are studied numerically.  相似文献   

4.
The problem of the motion of a swirling flow in an axisymmetric channel with permeable walls is investigated numerically. Various flow regimes including those with the formation of recirculation zones are obtained. The problem of atomization of a powder by a swirling flow for the purpose of obtaining a finely dispersed mixture is considered. Particle concentration distributions in the flow are calculated, the formation of characteristic deposition zones is demonstrated, and the unsteady process of particle transfer is investigated with allowance for deposition on the lateral surface of the channel.  相似文献   

5.
A turbulent flow of a suspension of solid particles in a gas is considered. The suspension is located in a channel with permeable walls (the pressure at the left end face of the channel follows a sinusoidal law). The flow considered here reflects the principal features of the flow in the combustion chamber of a solid-propellant rocket motor. The unsteady flow of the gas suspension is described by using the Eulerian-Lagrangian approach. A stochastic variant of the discrete-trajectory approach is used for modeling the particle motion. The influence of the condensed phase on the turbulence characteristics and acoustic oscillations of the parameters of the working medium in the channel in the case of injection is discussed. The calculated results are compared with data obtained in a physical experiment.  相似文献   

6.
The present paper reports on numerical simulations of blood flow and magnetic drug carrier distributions in a complex brain vascular system. The blood is represented as a non-Newtonian fluid by the generalised power law. The Lagrangian tracking of the double-layer spherical particles is performed to estimate particle deposition under influence of imposed magnetic field gradients across arterial walls. Two situations are considered: neutral (magnetic field off) and active control (magnetic field on) case. The double-layer spherical particles that mimic a real medical drug are characterised by two characteristic diameters - the outer one and the inner one of the magnetic core. A numerical mesh of the brain vascular system consisting of multi-branching arteries is generated from raw MRI scan images of a patient. The blood is supplied through four main inlet arteries and the entire vascular system includes more than 30 outlets, which are modelled by Murray’s law. The no-slip boundary condition is applied for velocity components along the smooth and rigid arterial walls. Numerical simulations revealed detailed insights into blood flow patterns, wall-shear-stress and local particle deposition efficiency along arterial walls. It is demonstrated that magnetically targeted drug delivery significantly increased the particle capturing efficiency in the pre-defined regions. This feature can be potentially useful for localised, non-invasive treatment of brain tumours.  相似文献   

7.
The stability of nonparallel flows of a viscous incompressible fluid in an expanding channel with permeable walls is studied. The fluid is supplied to the channel through the walls with a constant velocity v0 and through the entrance cross section, where a Hamel velocity profile is assigned. The resulting flow in the channel depends on the ratio of flow rates of the mixing streams. This flow was studied through the solution of the Navier—Stokes equations by the finite-difference method. It is shown that for strong enough injection of fluid through the permeable walls and at a distance from the initial cross section of the channel the flow approaches the vortical flow of an ideal fluid studied in [1]. The steady-state solutions obtained were studied for stability in a linear approximation using a modified Orr—Sommerfeld equation in which the nonparallel nature of the flow and of the channel walls were taken into account. Such an approach to the study of the stability of nonparallel flows was used in [2] for self-similar Berman flow in a channel and in [3] for non-self-similar flows obtained through a numerical solution of the Navier—Stokes equations. The critical parameters *, R*, and Cr* at the point of loss of stability are presented as functions of the Reynolds number R0, characterizing the injection of fluid through the walls, and the parameter , characterizing the type of Hamel flow. A comparison is made with the results of [4] on the stability of Hamel flows with R0 = 0.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 125–129, November–December, 1977.The author thanks G.I. Petrov for a discussion of the results of the work at a seminar at the Institute of Mechanics of Moscow State University.  相似文献   

8.
Existing knowledge on particle deposition rates on walls from turbulent pipe and channel flows is summarized and it is shown that discrepancies exist between experimental and theoretical findings. To contribute to the existing experimental information, laser Doppler measurements are reported of the flow field of a glass particle-air two-phase flow. The results reveal certain seemingly peculiar behaviors of the particles which obviously defy the predictions of the conventional analyses of turbulent two-phase suspension flows.In an accompanying approximate, yet pragmatic theoretical approach, an attempt is made to find a rational basis for the explanation of these experimentally observed particle behaviors. It is shown for the particles in the present study, there exists a limiting size above which their response to the agitation of the fluctuating motion of the surrounding fluid could be treated as if the flow were laminar. On this rational basis, these experimentally observed particle behaviors can then be qualitatively explained by the existing theory of particle excursion in a laminar shear flow field.Reported also is a suggestion to extend the present analysis to a dispersion of particles of multiple sizes.  相似文献   

9.
Within the framework of the model of two interpenetrating continua, a horizontal laminar dilute-suspension flow in a vertical Hele-Shaw cell is investigated. Using the method of matched asymptotic expansions, an asymptotic model of the transverse migration of sedimenting particles is constructed. The particle migration in the horizontal section of the cell is caused by an inertial lateral force induced by the particle sedimentation and the shear flow of the carrier phase. A characteristic longitudinal length scale is determined, on which the particles migrate across the slot through a distance of the order of the slot half-width. The evolution of the particle number concentration and velocity fields along the channel is studied using the full Lagrangian method. Depending on the particle inertia parameter, different particle migration regimes (with and without crossing of the channel central plane by the particles) are detected. A critical value of the particle inertia parameter corresponding to the change in migration regime is found analytically. The possibility of intersection of the particle trajectories and the formation of singularities in the particle number concentration is demonstrated.  相似文献   

10.
The dynamic behavior of a magma melt filling a slot channel (crack) in a closed explosive hydrodynamic structure is considered. The explosive hydrodynamic structure includes the volcano focal point with a connected vertical channel (conduit) closed by a slug and a system of internal cracks (dikes) near the dome, as well as a crater open into the atmosphere. A two-dimensional model of a slot eruption is constructed with the use of the Iordanskii–Kogarko–van Wijngaarden mathematical model of two-phase media and the kinetics that describes the basic physical processes in a heavy magma saturated by the gas behind the decompression wave front. A numerical scheme is developed for analyzing the influence of the boundary conditions on the conduit walls and scale factors on the melt flow structure, the role of viscosity in static modes, and dynamic formulations with allowance for diffusion processes and increasing (by several orders of magnitude) viscosity. Results of the numerical analysis of the initial stage of cavitation process evolution are discussed.  相似文献   

11.
Proppants transport is an advanced technique to improve the hydraulic fracture phenomenon, in order to promote the versatility of gas/oil reservoirs. A numerical simulation of proppants transport at both hydraulic fracture (HF) and natural fracture (NF) intersection is performed to provide a better understanding of key factors which cause, or contribute to proppants transport in HF–NF intersection. Computational fluid dynamics (CFD) in association with discrete element method (DEM) is used to model the complex interactions between proppant particles, host fluid medium and fractured walls. The effect of non-spherical geometry of particles is considered in this model, using the multi-sphere method. All interaction forces between fluid flow and particles are considered in the computational model. Moreover, the interactions of particle–particle and particle–wall are taken into account via Hertz–Mindlin model. The results of the CFD-DEM simulations are compared to the experimental data. It is found that the CFD-DEM simulation is capable of predicting proppant transport and deposition quality at intersections which are in agreement with experimental data. The results indicate that the HF–NF intersection type, fluid velocity and NF aperture affect the quality of blockage occurrence, presenting a new index, called the blockage coefficient which indicates the severity of the blockage.  相似文献   

12.
Direct numerical simulation (DNS) and experimental data have shown that inertial particles exhibit concentration peaks in isothermal turbulent boundary layers, whereas tracer-like particles remain well mixed in the domain. It is therefore expected that the interactions between turbulence and thermophoresis will be strong in particle-laden flows where walls and carrier fluid are at significantly different temperatures. To capture turbulent particle dispersion with active thermophoresis, a coupled CFD-Lagrangian continuous random walk (CRW) model is developed. The model uses 3D mean flow velocities obtained from the Fluent 6.3 CFD code, to which are added turbulent fluid velocities derived from the normalized Langevin equation which accounts for turbulence inhomogeneities. The mean thermophoretic force is included as a body force on the particle following the Talbot formulation. Validation of the model is performed against recent integral thermophoretic deposition data in long pipes as well as the TUBA TT28 test with its detailed local deposition measurements. In all cases, the agreement with the data is very good. In separate parametric studies in a hypothetical cooled channel flow, it is found that turbulence strongly enhances thermophoretic deposition of particles with dimensionless relaxation times τ+ of order 1 or more. On the other hand, the thermophoretic deposition of very small inertia particles (τ+ < 0.2) in the asymptotic region far from the injection point tends to that which characterizes stagnant flow conditions, in agreement with the DNS results of Thakurta et al.  相似文献   

13.
The molecular mass transfer boundary in an isothermal ternary gas system is numerically determined for a plane vertical diffusive channel with mass-impermeable walls. The critical Rayleigh number of diffusion-convection transition is determined for a slot channel. Theoretical studies performed within the framework of the linear stability theory are shown to be in agreement with the experimental data.  相似文献   

14.
Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant.  相似文献   

15.
In this paper we present a two-dimensional numerical study of the viscoelastic effects on the sedimentation of particles in the presence of solid walls or another particle. The Navier-Stokes equations coupled with an Oldroyd-B model are solved using a finite-element method with the EVSS formalism, and the particles are moved according to their equations of motion. In a vertical channel filled with a viscoelastic fluid, a particle settling very close to one side wall experiences a repulsion from the wall; a particle farther away from the wall is attracted toward it. Thus a settling particle will approach an eccentric equilibrium position, which depends on the Reynolds and Deborah numbers. Two particles settling one on top of the other attract and form a doublet if their initial separation is not too large. Two particles settling side by side approach each other and the doublet also rotates till the line of centers is aligned with the direction of sedimentation. The particle-particle interactions are in qualitative agreement with experimental observations, while the wall repulsion has not been documented in experiments. The driving force for lateral migrations is shown to correlate with the pressure distribution on the particle's surface. As a rule, viscoelasticity affects the motion of particles by modifying the pressure distribution on their surface. The direct contribution of viscoelastic normal stresses to the force and torque is not important.  相似文献   

16.
The problem of unsteady oscillatory flow and heat transfer of two viscous immiscible fluids through a horizontal channel with isothermal permeable walls has been considered. The partial differential equations governing the flow and heat transfer are solved analytically using two-term harmonic and non-harmonic functions in both fluid regions of the channel. Effects of physical parameters such as viscosity ratio, conductivity ratio, Prandtl number and frequency parameter on the velocity and temperature fields are shown graphically. It is observed that the velocity and temperature decrease as the viscosity ratio increases, while they increase with increases in frequency parameter. The effect of increasing the thermal conductivity ratio also suppresses the temperature in both fluid regions. The effect of periodic frequency on the flow is depicted in tabular form. It is predicted that both the velocity and temperature profiles decrease as the periodic frequency increases.  相似文献   

17.
为研究带电旋转环形通道内荷电颗粒的运动和沉积特性,本文使用计算流体力学两相流离散颗粒法对带电旋转环形通道内的荷电颗粒的运动过程进行了模拟。根据模拟结果分析了不同粒径、电压、入口雷诺数和通道长径比等参数对荷电颗粒运动和沉积的影响,研究了荷电颗粒在旋转通道内离心力与电场力之间的竞争关系,探索了离心力和电场力导致的荷电颗粒运动和沉积变化的规律。结果表明,单个不同粒径颗粒具有不同的颗粒逃逸电压区间,区间的大小随着颗粒粒径的增大而增大,且区间的宽度随着通道长径比的增大将会明显变小;多个颗粒的逃逸率曲线,不同粒径的颗粒将会有不同程度的交叉,随着长径比的增大,颗粒逃逸率曲线的高度与交叉会有明显的减小,而随着转速的增大,颗粒逃逸率曲线的交叉会有一定程度的减小,且高度不会有明显变化。  相似文献   

18.
A numerical study is presented for the effect of wall roughness on the deposition of solid spherical particles in a fully developed turbulent channel flow based on large eddy simulation combined with a Lagrangian particle-tracking scheme. The interest is focused on particles with response times in wall units in the range of 2.5 ≤ τp+ ≤ 600 depositing onto a vertical rough surface consisting of two-dimensional transverse square bars separated by a rectangular cavity. Predictions of particle deposition rates are obtained for several values of the cavity width to roughness element height ratio and particle response time. It is shown that the accumulation of particles in the near wall region and their preferential concentration in flow areas of low streamwise fluid velocity that occur in turbulent flows at flat channels are significantly affected by the roughness elements. Particle deposition onto the rough wall is considerably increased, exhibiting a subtle dependence on the particle inertia and the spacing between the bars. The observed augmentation of deposition coefficient can be attributed to the flow modifications induced by the roughness elements and to the inertial impaction of particles onto the frontal deposition area of the protruding square bars.  相似文献   

19.
20.
First,the characteristics of low-velocity conveying of particles having different hardness are experimentally investigated in a horizontal pipeline in terms of flow pattern and pressure drop to show that the slug flow can be classified into two types depending on the settling of particles along the pipeline,and the period is small for slug flow without the settled layer,which is called solitary slug flow.The pressure drop for soft particles is shown to be larger than that for hard particles.Then,experimental results are presented on horizontal fluidized-bed conveying of fine powders to show that air release from the top surface of the conveying channel is an important factor for high mass flow rate of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号