首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Numerical simulation is used to study the Kolmogorov flow in a shear layer of a compressible inviscid medium. A periodic permanent force applied to the flow gives rise to a vortex cascade of instabilities. The influence exerted by the size of the computational domain, the initial conditions, and the amplitude of the force on the formation of an instability cascade and the transition to turbulence is studied. It is shown that the mechanism of the onset of turbulence has an essentially three-dimensional nature. For the turbulent flows computed, the classical Kolmogorov ?5/3 power law holds in the inertial range.  相似文献   

2.
Numerical simulation is used to investigate a shear layer influenced by a constant external forcing in the theory of turbulence (Kolmogorov’s problem). The dynamics of flows developing in the case of various initial streamwise velocity profiles are studied. The transition from a two-dimensional laminar flow to a three-dimensional turbulent flow is considered. It is shown that developing hydrodynamic instabilities give rise to an eddy cascade, which, in the transition of the flow to a turbulent stage, corresponds to an eddy cascade developing in the energy and, then, inertial ranges.  相似文献   

3.
The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap width between the cylinders, the initial perturbation, and the velocity difference between the cylinders) is analyzed. It is shown that the onset of turbulence is accompanied by the formation of large vortices. The results are analyzed and compared with those of similar studies.  相似文献   

4.
The structure of the critical layer in a stratified shear flow is investigated for finite-amplitude waves at high Reynolds numbers. Under such conditions, which are characteristic of the Clear Air Turbulence environment, nonlinear effects will dominate over diffusive effects. Nevertheless, it is shown that viscosity and heat-conduction still play a significant role in the evolution of such waves. The reason is that buoyancy leads to the formation of thin diffusive shear layers within the critical layer. The local Richardson number is greatly reduced in these layers and they are, therefore, likely to break down into turbulence. A nonlinear mechanism is thus revealed for producing localized instabilities in flows that are stable on a linear basis. The analysis is developed for arbitrary values of the mean flow Richardson number and results are obtained numerically.  相似文献   

5.
This paper considers numerically generated turbulence obtained by integrating the complete time-dependent three-dimensional Navier-Stokes equations. The simulated unidirectional turbulent flow, bounded by two parallel planes, is strongly inhomogeneous in the direction normal to the planes but homogeneous in the parallel directions. The resulting flow field, which is considered a numerical realization of fully developed turbulent channel flow, contains detailed information on spatial coherent flow structures as well as on the time-dependency and statistics of the three-dimensional velocity and pressure fields. Focussing here on the statistics of the numerically generated turbulence, second-moments and higher-moments are presented and compared with the most recent PTV and LDV laboratory measurements. It is concluded that direct numerical simulations are an invaluable approach to turbulence which complements field studies and laboratory investigations. Numerical experiments are now becoming a principal source of detailed and reliable information, which play a key role in the deepening of our understanding of turbulent flow phenomena.  相似文献   

6.
The time evolution of a two-dimensional line thermal — a turbulent flow produced by an initial element with significant buoyancy released in a large water body, is numerically studied using the two-equation k-e model for turbulence closure.  相似文献   

7.
The density-dependent flow and transport problem in groundwater on three-dimensional triangulations is solved numerically by means of a mixed hybrid finite element scheme for the flow equation combined with a mixed hybrid finite element-finite volume (MHFE-FV) time-splitting-based technique for the transport equation. This procedure is analyzed and shown to be an effective tool in particular when the process is advection dominated or when density variations induce the formation of instabilities in the flow field. From a computational point of view, the most effective strategy turns out to be a combination of the MHFE and a spatially variable time-splitting technique in which the FV scheme is given by a second-order linear reconstruction based on the least-squares minimization and the Barth–Jespersen limiter. The recent saltpool problem introduced as a benchmark test for density-dependent solvers is used to verify the accuracy and reliability of this approach.  相似文献   

8.
In the present study, the turbulent gas flow dynamics in a two-dimensional convergent–divergent rocket nozzle is numerically predicted and the associated physical phenomena are investigated for various operating conditions. The nozzle is assumed to have impermeable and adiabatic walls with a flow straightener in the upstream side and is connected to a plenum surrounding the nozzle geometry and extended in the downstream direction. In this integrated component model, the inlet flow is assumed a two-dimensional, steady, compressible, turbulent and subsonic. The physics based mathematical model of the considered flow consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The system of the governing equations with turbulent effects is solved numerically using different turbulence models to demonstrate their numerical accuracy in predicting the characteristics of turbulent gas flow in such complex geometry. The performance of the different turbulence models adopted has been assessed by comparing the obtained results of the static wall pressure and the shock position with the available experimental and numerical data. The dimensionless shear stress at the nozzle wall and the separation point are also computed and the flow field is illustrated. The various implemented turbulence models have shown different behavior of the turbulent characteristics. However, the shear-stress transport (SST) kω model exhibits the best overall agreement with the experimental measurements. In general, the proposed numerical procedure applied in the present paper shows good capability in predicting the physical phenomena and the flow characteristics encountered in such kinds of complex turbulent flow.  相似文献   

9.
Growing finite-amplitude initially spanwise-independent two-dimensional rotational waves and their nonlinear interaction with unidirectional viscous shear flows of various strengths are considered. Both primary and secondary instabilities are studied, but only secondary instabilities are permitted to vary in the spanwise direction. A generalized Lagrangian-mean formulation is employed to describe wave-mean interactions, and a separate theory is constructed to account for the back effect of the developing mean flow on the wave field. Viscosity is seen to significantly complicate calculation of the back effect. The primary instability is seen to act as a platform for, and catalyst to, secondary instabilities. The analysis leads to an eigenvalue problem for the initial growth of the secondary instability, this being a generalization of the eigenvalue problem constructed by Craik for inviscid neutral waves. Two inviscid secondary instability mechanisms to longitudinal vortex form are observed: the first has as its basis the Craik–Leibovich type 2 mechanism. The second, which is as yet unproven, requires that both the wave and flow field distort in concert at all levels of shear. Both mechanisms excite exponential growth on a convective rather than diffusive scale in the presence of neutral waves, but growing waves alter that growth rate.  相似文献   

10.
U. Schoisswohl  H. Kuhlmann 《PAMM》2006,6(1):589-590
The instability of steady axisymmetric thermocapillary flow in liquid pools heated from above is investigated numerically. The conditions for the onset of three-dimensional motion depend on the thermal conditions as well as the geometrical constraints. The critical Reynolds number is calculated as a function of the Prandtl number for a cylindrical pool of unit aspect ratio. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The task of this study is to investigate the influence of various geometric parameters and pressure ratios on the Coanda ejector performance. For numerically investigations we use an implicit formulation of the compressible Reynolds-average Navier-Stokes equations (RANS) for axisymmetric flow with a shear stress transport k − ω (SST model) turbulence model. The numerically results was obtained for a total pressure range 1-5 Bars, imposed at the reservoir inlet. The effect of various factors, such as, the pressure ratio, primary nozzle and ejector configurations on the system performance has been evaluated based on defined performance parameters. The numerical results have been compared with theoretical and experimental results for a given Coanda ejector configuration. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A mechanism is proposed describing the formation of irregular attractors in a wide class of three-dimensional nonlinear autonomous dissipative systems of ordinary differential equations with singular cycles. The attractors of such systems, called singular attractors, lie on two-dimensional surfaces in the phase space and have no positive Lyapunov exponents. In all systems of this class the onset of chaos follows the same universal mechanism: a cascade of Feigenbaum’s period doubling bifurcations, a subharmonic cascade of Sharkovskii’s bifurcations, and eventually a homoclinic cascade. All classical chaotic systems, including Lorenz, Rössler, and Chua systems, satisfy these conditions.  相似文献   

13.
The stability of certain steady flows in a rotating system with rigid bottom and free top surfaces is investigated. The simplest flow states having the essential spatial variations of steady responses of a rotating fluid system to differential heating in the horizontal are studied, that is, those with a constant gradient temperature distribution with both horizontal and vertical components, and the accompanying Coriolis-balanced constant velocity shear (thermal wind). Ekman boundary layers and intermediate boundary layers are encountered in a systematic asymptotic analysis in two small parameters, the Ekman number and an inverse Richardson number. The resulting neutral stability curves indicate the possibility of instabilities above the inviscid stability criterion due to Eady, for some mean flow configurations. The estimate of the critical Taylor number is numerically close to the values obtained in the most nearly applicable experiments.  相似文献   

14.
In this paper we investigate the effect of a prescribed superficial shear stress on the generation and structure of roll waves developing from infinitesimal disturbances on the surface of a power-law fluid layer flowing down an incline. The unsteady equations of motion are depth integrated according to the von Kármán momentum integral method to obtain a non-homogeneous system of nonlinear hyperbolic conservation laws governing the average flow rate and the thickness of the fluid layer. By conducting a linear stability analysis we obtain an analytical formula for the critical conditions for the onset of instability of a uniform and steady flow in terms of the prescribed surface shear stress. A nonlinear analysis is performed by numerically calculating the nonlinear evolution of a perturbed flow. The calculation is carried out using a high-resolution finite volume scheme. The source term is handled by implementing the quasi-steady wave propagation algorithm. Conclusions are drawn regarding the effect of the applied surface shear stress parameter and flow conditions on the development and characteristics of the roll waves arising from the instability. For a Newtonian flow subjected to a prescribed superficial shear stress, using an analytical theory, we show that the nonlinear governing equations do not admit roll waves solutions under conditions when the uniform and steady flow is linearly stable. For the case of a general power-law fluid flow with zero shear stress applied at the surface, the analytical investigation leads to a procedure for calculating the characteristics of a roll waves flow. These results are compared with those yielded by the numerical procedure.  相似文献   

15.
The flow field, scavenging efficiency, power output, heat transfer losses, and unburned hydrocarbon emissions have been numerically studied by means of a two-equation model of turbulence in a four-stroke, homogeneous-charge, spark-ignition engine. The engine is equipped with an intake valve, an exhaust valve, and a constant rate heat source which simulates the spark plug. Combustion has been modelled by means of a one-step irreversible chemical reaction whose rate is controlled by an Arrhenius-type expression. The numerical results indicate that the intake stroke is characterized by the formation of two eddies which persist in the compression stroke. Turbulence is generated at the shear layers of the air jet drawn into the cylinder, but its level decreases in the compression stroke. Due to the heat released by the spark plug and the chemical reaction, a spherical flame kernel is formed. This kernel evolves into a cylindrical flame when the flame front reaches the piston. Fuel remains unburnt at the corner between the cylinder head and the cylinder wall due to heat transfer losses. The numerical results also indicate that despite uncertainties about the turbulence and heat transfer models, an engine model such as the one studied here can be used to understand the flow field, heat transfer losses, scavenging efficiency, and power output in conventional spark-ignition engines. Such capabilities are very helpful in the development and optimization stages of engines. For example, here the engine model thermal and scavenging efficiencies are 15.69% and 94%, respectively. The peak pressure is 33 atm and occurs at 6° ATDC. The unburnt hydrocarbon emissions are 7.41% of the total fuel admitted into the cylinder.  相似文献   

16.
Granular media are frequently found in nature and in industry and their transport by a fluid flow is of great importance to human activities. One case of particular interest is the transport of sand in open-channel and river flows. In many instances, the shear stresses exerted by the fluid flow are bounded to certain limits and some grains are entrained as bed-load: a mobile layer which stays in contact with the fixed part of the granular bed. Under these conditions, an initially flat granular bed may be unstable, generating ripples and dunes such as those observed on the bed of rivers. In free-surface water flows, dunes are bedforms that scale with the flow depth, while ripples do not scale with it. This article presents a model for the formation of ripples and dunes based on the proposition that ripples are primary linear instabilities and that dunes are secondary instabilities formed from the competition between the coalescence of ripples and free surface effects. Although simple, the model is able to explain the growth of ripples, their saturation (not explained in previous models) and the evolution from ripples to dunes, presenting a complete picture for the formation of dunes.  相似文献   

17.
The SE1050 cascade is an open test case (QNET network) of plane turbine cascade measured at the IT ASCR wind tunnel. The two regimes with subsonic and supersonic outletMach number were selected for numerical simulation. Several numerical methods have been developed and also several turbulence models have been implemented. Comparison of computed results and experimental data gives us opportunity to discuss main features of transonic flow field in well designed turbine cascade, possibilities of its numerical capturing (grid quality, numerical viscosity, turbulence model, boundary layer transition) and its influence on prediction of energy losses. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The interaction between a columnar vortex and external turbulence is investigated numerically. A q -vortex is immersed in an initially isotropic homogeneous turbulence field, which itself is produced numerically by a direct numerical simulation of decaying turbulence. The formation of turbulent eddies around the columnar vortex and the vortex-core deformations are studied in detail by visualizing the flow field. In the less-stable case with q = –1.5, small thin spiral structures are formed inside the vortex core. In the unstable case with q = –0.45, the linear unstable modes grow until the columnar vortex make one turn. Its growth rate agrees with that of the linear analysis of Mayer and Powell[1]. After two turns of the vortex, the secondary instability is excited, which causes collapse of the columnar q -vortex and the sudden appearance of many fine scale vortices. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
During the compression phase of high pressure treatment of aqueous food, the temperature locally increases approx. 2-3 K per 100 MPa in the isentropic case as a result of the external work done by the volume change of the fluid. It could be concluded in the authors' previous contributions that heat transfer induces undesired process non-uniformities, and therefore, significantly influences the product quality. However, the turbulent inflow conditions existing in larger autoclaves are expected to change homogeneity of the thermofluiddynamical fluid. In this contribution, the presence of the turbulence generated during the compression phase of the High -Pressure-treatment and its influence on process non-uniformities throughout the high pressure processing are investigated numerically. For the numerical simulations, a three-dimensional model of a cylindrical autoclave with a net volume of 3.3 Litre is created. To investigate the influence of the turbulence on product quality, a model of the inactivation of the enzyme Bacillus Subtilis α-Amylase is employed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach numberMc = 0.8 andRe = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of A -vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号