首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiral Gallium and Indium Alkoxometalates Li2(S)‐BINOLate ((S)‐BINOL = (S)‐(–)‐2,2′‐Dihydroxy‐1,1′‐binaphthyl) generated by dilithiation of (S)BINOL with two equivalents nBuLi was reacted with GaCl3 und InCl3 in THF to the alkoxometalates [{Li(THF)2}{Li(THF)}2{Ga((S)‐BINOLate)3}] ( 1 ) and [{Li(THF)2}2{Li(THF)}{In((S)‐BINOLate)3}] · [{Li(THF)2}{Li(THF)}2{In((S)‐ BINOLate)3}]2 ( 3 ), respectively. 1 and 3 crystallize from THF/toluene mixtures as 1 · 2 toluene and 3 · 8 toluene. The treatment of PhCH2GaCl2 with Li2(S)‐BINOLate in THF under reflux, followed by recrystallization of the product from DME gives the gallate [{Li(DME)}3{Ga((S)BINOLate)3}] · 1.5 THF ( 2 · 1.5 THF). 1 – 3 were characterized by NMR, IR and MS techniques. In addition, 1 · 2 toluene, 2 · 1.5 THF and 3 · 8 toluene were investigated by X‐ray structure analyses. According to them, a distorted octahedral coordination sphere around the group 13 metal was formed, built‐up by three BINOLate ligands. The three Li+ counter ions act as bridging units by metal‐oxygen coordination. The coordination sphere of the Li+ ions was completed, depending on the available space, by one or two THF ligands ( 1 · 2 toluene, 3 · 8 toluene) and one DME ligand ( 2 · 1.5 THF), respectively. The sterical dominance of the BINOLate ligands can be shown by the almost square‐planar coordination of the Li+ ions in 2 · 1.5 THF giving a small twisting angle of only 17°.  相似文献   

2.
Three kinds of trinuclear metal string complexes, [Ni3(dpa)4(L1)2]?·?H2O?·?C2H5OH (L1?=?(E)-3-(2-hydroxyl-phenyl)-acrylic acid) (1), [Ni3(dpa)4(L2)2]?·?2C2H5OC2H5 (L2?=?(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (2) and [Ni3(dpa)4(L3)2]?·?3CH2Cl2?·?1.5CH3OH (L3?=?(E)-3-(4-hydroxyl-phenyl)-acrylic acid) (3). (dpa??=?bis(2-pyridyl)amido), have been synthesized. The structures of 1 and 2 have been analyzed by the X-ray single-crystal diffraction showing hydrogen-bonded networks.  相似文献   

3.
Sodium titanium germanate with a semicrystalline framework (STG) of the formula Na3H(TiO)3(GeO)(GeO4)3·7H2O was synthesized under mild hydrothermal conditions and its proton form, H4(TiO)3(GeO)(GeO4)3·8H2O (STG-H), was prepared by acid treatment of the sodium compound. The STG was characterized by elemental analysis, TGA, FT-IR, and X-ray powder diffraction. A comparative ion exchange examination of the STG-H towards alkali and alkaline earth metals in a broad pH and concentration range was carried out. It was found that the STG is a moderately weak cation exchanger, possessing high ion exchange capacity (up to 4.0 meq/g) and showing preference for heavy alkali and alkaline earth metals. The STG selectivity towards Cs+ and Sr2+ ions in the presence of competitive metal ions and certain organic compounds was also studied. The data obtained suggest that the sodium titanium germanate is a more selective exchanger for Sr2+ ion than its titanium silicate analogue, K3H(TiO)4(SiO4)3·4H2O.  相似文献   

4.
Abstract. The 3D cobalt(II) coordination polymers [Co1.5(HDDB)(1,4‐bib)1.5(H2O)]n ( 1 ), and {[Co2(DDB)(1,3‐bib)22‐H2O)] · H2O}n ( 2 ) were assembled by mixed‐ligand synthetic strategy [H4DDB = 1,3‐bis(2,4‐dicarboxyphenyl) benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and 1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single X‐ray diffraction analysis reveals that complex 1 is an interestingly 3D (3,3.6)‐connected (63)4(65 · 88 · 102) net, and complex 2 is an unprecedented dinuclear [Co2(COO)(μ2‐H2O)] SBUs based 3D (3,6)‐connected (3 · 6 · 7)(32 · 43 · 54 · 63 · 7 · 82) net. Additionally, the magnetic properties of 2 were investigated.  相似文献   

5.
Two new dinuclear macrocyclic complexes, [Ni2L1(OAc)]·ClO4 (1) and [Co2L2(OAc)]·1.5(ClO4)·0.5Na·2(CH3OH) (2) (where H2L1 and H2L2 are the condensation products of N,N-bis(3-aminopropyl)-4-methoxybenzylamine with 2,6-diformyl-4-brominephenol and 2,6-diformyl-4-methylphenol in the presence of metal ions, respectively) have been synthesized and characterized by infrared spectra, elemental analysis, electrospray mass spectra, and X-ray single crystal diffraction. The interactions of the complexes with CT-DNA have been measured by UV-absorption titrations and fluorescence quenching experiments.  相似文献   

6.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

7.
The ZrO(NO3)2-H3PO4-CsF-H2O system was studied at 20°C along the section at a molar ratio of PO43−/Zr = 0.5 (which is of the greatest interest in the context of phase formation) at ZrO2 concentrations in the initial solutions of 2–14 wt % and molar ratios of CsF: Zr = 1−6. The following compounds were isolated for the first time: crystalline fluorophosphates CsZrF2PO4 · H2O, amorphous oxofluorophosphate Cs2Zr3O2F4(PO4)2 · 3H2O, and amorphous oxofluorophosphate nitrate CsZr3O1.25F4(PO4)2(NO3)0.5 · 4.5H2O. The compound Cs3Zr3O1.5F6(PO4)2 · 3H2O was also isolated, which forms in a crystalline or glassy form, depending on conditions. The formation of the following new compounds was established: Cs2Zr3O1.5F5(PO4)2 · 2H2O, Cs2Zr3F2(PO4)4 · 4.5H2O, and Zr3O4(PO4)1.33 · 6H2O, which crystallize only in a mixture with known phases. All the compounds were studied by X-ray powder diffraction, crystal-optical, thermal, and IR spectroscopic analyses.  相似文献   

8.
The First Hydrogencarbonates with a Trimeric [H2(CO3)3]4? Group: Preparation and Crystal Structure of Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1.5 H2O Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1,5 H2O were prepared by means of the reaction of (CH3)2CO3 with RbOH resp. KOH in aqueous methanole. Trimer [H2(CO3)3]4?-anions were found in the crystal structure of Rb4H2(CO3)3 · H2O (orthorhombic, Pnma (no. 62), a = 1 218.0(1) pm, b = 1 572.3(6) pm, c = 615.9(1) pm, VEZ = 1 179.5(5) · 106 pm3, Z = 4, R1(I ≥ 2σ(I)) = 0.027, wR2(I ≥ 2σ(I)) = 0.055). K4H2(CO3)3 · 1,5 H2O crystallizes in an OD-structure. The determined superposition structure (orthorhombic, Pbam (no. 55), a = 1 161.8(1) pm, b = 597.0(1) pm, c = 383.85(3) pm, VEZ = 266.3(1) · 106 pm3, Z = 1, R1(I ≥ 2σ(I)) = 0.035, wR2(I ≥ 2σ(I)) = 0.074) can be derived from the structure of the rubidium compound. The thermal decomposition of the substances is discussed.  相似文献   

9.
The thermal stability of cesium fluorophosphatohafnates (crystalline CsHf2F2(HPO4)2PO4 · 2H2O, CsHfF2PO4 · 0.5H2O, CsHf2F6PO4 · 4H2O and X-ray amorphous Cs2Hf3O1.5F5(PO4)2 · 5H2O, Cs5H4Hf3F7(PO4)3.66(NO3)3 · 5H2O) was determined. The weight ratios Cs+/Hf and PO 4 3? /ZrHf in CsHf2F2(HPO4)2PO4 · 2H2O were confirmed by identifying the calcination production CsHf2(PO4)3 (~1000°C). A new crystalline compound CsHf2F(HPO4)(PO4)2 was found by thermogravimetric and X-ray powder diffraction analysis during heating. A new method for hydrothermal synthesis of CsHf2(PO4)3, which was different from the already known one, was proposed. It was ascertained that CsHf2(PO4)3 possesses a significant X-ray luminescence; whereas in fluorophosphatehafnates show low luminescence intensity.  相似文献   

10.
The crystal structures of Na2Mg3(OH)2(SO4)3 · 4H2O and K2Mg3(OH)2(SO4)3 · 2H2O, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by mixing alkali metal sulfate, magnesium sulfate hydrate, and magnesium oxide with small amounts of water followed by heating at 150 °C. The compounds crystallize in space group Cmc21 (No. 36) with lattice parameters of a = 19.7351(3), b = 7.2228(2), c = 10.0285(2) Å for the sodium and a = 17.9427(2), b = 7.5184(1), c = 9.7945(1) Å for the potassium sample. The crystal structure consists of a linked MgO6–SO4 layered network, where the space between the layers is filled with either potassium (K+) or Na+‐2H2O units. The potassium‐bearing structure is isostructural to K2Co3(OH)2(SO4)3 · 2(H2O). The sodium compound has a similar crystal structure, where the bigger potassium ion is replaced by sodium ions and twice as many water molecules. Geometry optimization of the hydrogen positions were made with an empirical energy code.  相似文献   

11.

The crystals of the compounds [Na4(H2O)14CB[6]](bdc)2 · 13H2O (1) and [Na6(H2O)19CB[6]]-(bdc)3 ·15H2O (2) were obtained by heating an aqueous solution of sodium terephthalate (Na2bdc) and cucurbit[6]uril (CB[6]). According to the single-crystal X-ray diffraction data, the sodium aqua complexes and cucurbit[6]uril molecules form chains (in structure 1) and layered metal-organic frameworks (in structure 2). The structures of the sodium aqua complexes [Na3(H2O)10]3+ in 1 and [Na6(H2O)19]3+ in 2 have been previously unknown. When submitted to ultraviolet radiation, crystals of 1 and 2 exhibit luminescence with an emission maximum at 428 and 434 nm, respectively.

  相似文献   

12.
Organometallic Compounds of the Lanthanides. LIII. (C5H5Gd)52-OCH3)43-OCH3)45-O) and [Na2(tC4H9OGd)43-OtC4H9)86-O)], two New Alkoxi Gadolinium Clusters with Interstitial Oxygen Gadolinium trichloride reacts in tetrahydrofurane with cyclopentadienyl sodium and two equivalents of sodium methoxide with formation of (C5H5Gd)52-OCH3)43-OCH3)45-O) ( 1 ), and with potassium tert-butoxide with formation of [Na2(tC4H9OGd)43-OtC4H9)86-O)] ( 2 ). The X-ray structure of 1 shows a tetragonal pyramide build up by five gadolinium atoms, containing an oxygen atom in the center of the base and eight bridging methoxo groups. The structure of 2 consists of an oxygen centered octahedron build up by two sodium and four gadolinium atoms, connected by eight bridging tert-butoxy groups and four terminal butoxides. The monoclinic crystals of 1 , space group I2/a have the following crystallographic data: a = 2 276.9(5) pm, b = 2 063.1(6) pm, c = 3 152.2(3) pm, β = 90.7(1)°, Z = 12, Dcalcd 1.85 g · cm?3, R = 0.0519. 2 crystallizes tetragonal, space group I4/mmm with a = 1 728.5(4) pm, b = 1 031.0(3) pm, Z = 2, Dcalcd 1.69 g · cm?3, R = 0.0682.  相似文献   

13.
The complexes [Dy(NO3)3(Bipy)2], (HBipy)[Gd(NO3)4(Bipy)], and [FeIII(Me2Bipy)3][La(NO3)5(H2O)]NO3 and the precursor of the latter, [FeIIPc2(Me2Bipy)](CHCl3) · 1.5H2O (where Bipy is the 2,2′-bipyridyl, Me2Bipy is the 4,4′-dimethyl-2,2′-bipyridyl, and Pc? is the pyridine-2-carboxylate anion), were obtained and characterized by X-ray diffraction analysis. Depending on the conditions of the synthesis and the reagents, the number of coordinated nitrate groups in the lanthanide complex increases from three to five: [Dy(NO3)3(Bipy)2], [Gd(NO3)4(Bipy)]?, and [La(NO3)5(H2O)]2?.  相似文献   

14.
2‐(Methylthio)aniline (H2L1) and 2‐(phenylthio)aniline (H2L2) were treated with n‐butyllithium to yield the corresponding anilides [LiHL1] and [LiHL2]. Recrystallization from diethyl ether and THF afforded the solvates [LiHL1(Et2O)] and [LiHL2(THF)2]. The X‐ray crystal structure determination revealed dimeric molecules which exhibit a centrosymmetric Li2N2 ring. In the case of [LiHL1(Et2O)] the SMe group is involved in Li coordination and in the case of [LiHL2(THF)2] the SPh group is part of an intramolecular N–H ··· S hydrogen bridge. The sodium anilides [NaHL1(DME)] and [NaHL2(DME)] were obtained from the reaction of H2L1 and H2L2 with sodium amide in DME as solvent. Like in the case of the lithium amides the sodium derivatives [NaHL1(DME)] and [NaHL2(DME)] display centrosymmetric Na2N2 cores. The coordination sphere of the sodium atoms is completed by DME molecules, which act as chelating ligands. In the case of [NaHL1(DME)] the DME molecules enable additionally a linkage of the dimeric subunits to give a chain structure. The potassium derivatives [KNHL1] and [KNHL2(DME)] were obtained from H2L1 and H2L2 and potassium hydride in DME as solvent. [KNHL1] displays a distinct structure based on [(KNHL1)2] dimers, which are linked by additional [KNHL1] units to give a 3D coordination polymer with {4.8.16(3)} topology. [KNHL2(DME)] forms dimers linked by bridging DME molecules to give a chain‐like coordination polymer.  相似文献   

15.
The Mx Hy (A O4)z acid salts (M = Cs, Rb, K, Na, Li, NH4; A = S, Se, As, P) exhibit ferroelectric properties. The solid acids have low conductivity values and are of interest with regard to their thermal properties and proton conductivity. The crystal structure of caesium dihydrogen orthophosphate monohydrogen orthophosphate dihydrate, Cs3(H1.5PO4)2·2H2O, has been solved. The compound crystallizes in the space group Pbca and forms a structure with strong hydrogen bonds connecting phosphate tetrahedra that agrees well with the IR spectra. The dehydration of Cs3(H1.5PO4)2·2H2O with the loss of two water molecules occurs at 348–433 K. Anhydrous Cs3(H1.5PO4)2 is stable up to 548 K and is then converted completely into caesium pyrophosphate (Cs4P2O7) and CsPO3. Anhydrous Cs3(H1.5PO4)2 crystallizes in the monoclinic C 2 space group, with the unit‐cell parameters a = 11.1693 (4), b = 6.4682 (2), c = 7.7442 (3) Å and β = 71.822 (2)°. The conductivities of both compounds have been measured. In contrast to crystal hydrate Cs3(H1.5PO4)2·2H2O, the dehydrated form has rather low conductivity values of ∼6 × 10−6–10−8 S cm−1 at 373–493 K, with an activation energy of 0.91 eV.  相似文献   

16.
刘志宏  赵莉  胡满成 《中国化学》2003,21(12):1569-1572
Introduction   2MgO·B2 O3(Mg2 B2 O5)and 2MgO·B2 O3·H2 Omightbepreparedaswhiskermaterials .12MgO·B2 O3·H2 OnamedszaibelyiteisamagnesiumboratemineralwithastructuralformulaofMg2 [B2 O4 (OH) 2 ].2 Itisdifficulttosynthesizethiscompoundinthelaboratory .Recently ,weobtainedasimilarcompound 2MgO·B2 O3·1 5H2 Owhenwetriedtopreparewhiskerof 2MgO·B2 O3·H2 Obythephasetransformationof 2MgO·2B2 O3·MgCl2 ·14H2 OinH3BO3solutionunderhydrothermalcondition .Itishope fultopreparewh…  相似文献   

17.
The compound [NH4(NH3)4][Co(C2B9H11)2] · 2 NH3 ( 1 ) was prepared by the reaction of Na[Co(C2B9H11)2] with a proton‐charged ion‐exchange resin in liquid ammonia. The ammoniate 1 was characterized by low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of [Co(C2B9H11)2] complexes, which are connected via C‐H···H‐B dihydrogen bonds. Furthermore, 1 contains an infinite equation/tex2gif-stack-2.gif[{NH4(NH3)4}+(μ‐NH3)2] cationic chain, which is formed by [NH4(NH3)4]+ ions linked by two ammonia molecules. The N‐H···N hydrogen bonds range from 1.92 to 2.71Å (DHA = Donor···Acceptor angles: 136‐176°). Additional N‐H···H‐B dihydrogen bonds are observed (H···H: 2.3‐2.4Å).  相似文献   

18.
Phase formation in the ZrO(NO3)2-NaF(HF)-H3PO4-H2O system was studied at 20°C and 2.0–14.5 wt % ZrO2 in the initial solution along sections with molar ratios PO 4 3? /Zr = 0.5 and 1.5 and also in the presence of hydrogen fluoride at Na/Zr = 1 and PO 4 3? /Zr = 0.5, 1.0, and 1.5. Crystalline zirconium hydrophosphate Zr(HPO4)2 · H2O, fluorozirconates Na5Zr2F13 and Na7Zr6F31 · 12H2O, fluorophosphatozirconates NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O, and amorphous NaZrO0.5F(PO4) · 4H2O (provisional composition) were separated at room temperature. NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O were prepared for the first time and were studied by crystal-optical, elemental, and thermal analyses, X-ray powder diffraction, IR spectroscopy, scanning electron microscopy (SEM), and X-ray microanalysis. Na7Hf6F31 · 12H2O was found to exist in a mixture with the hydrophosphate.  相似文献   

19.
Two new coordination polymers, namely [Zn3(1,3,5-BTC)2(L1)2(H2O)2] · 2H2O (1) and [Cd3(1,2,3-BTC)2(L2)3] · H2O (2) (where L1 = 1,2-bis(imidazol-1-ylmethyl)benzene, L2 = 1,1′-(1,4-butanediyl)bis(imidazole), 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid and 1,2,3-H3BTC = 1,2,3-benzenetricarboxylic acid), were synthesized in hydrothermal conditions. In 1, each 1,3,5-BTC anion coordinates to three Zn cations, and the framework of 1 can be simplified as (6 · 8 · 10)2(62 · 8 · 103)(82 · 10)(62 · 10) topology. In 2, 1,2,3-BTC anions coordinate to three cadmiums, and the whole structure displays a (62 · 84)2(64 · 8 · 10)(62 · 8)2 network containing three different types of nodes. The luminescent properties for 1 and 2 are discussed.  相似文献   

20.
Copper(II) complexes incorporating the isomeric tolyl-derivatised terpyridine ligands, 4′-p-tolyl-2,2′:6′,2′′-terpyridine (L1) and 6′-p-tolyl-2,2′:2′′,4′-terpyridine (L2) have been prepared and characterised by X-ray diffraction. The first of these is a co-crystal of type [Cu(L1)(NO3)2]·[Cu(L1)(NO3)(EtOH)]NO3·MeOH while the second is a single complex of type [Cu(L2)2(NO3)]NO3·0.5MeOH·1.5H2O. Crystallisation of a mixture of both products from ethanol/methanol (1:1) yields an unusual co-crystalline product of stoichiometry [Cu(L2)2NO3]2[Cu(L1)(NO3)2](NO3)2 whose structure was also confirmed by an X-ray stucture determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号