首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Mendeleev Communications》2023,33(1):127-129
Covalently cross-linked carbon nanotube network has been synthesized using spark plasma sintering followed by nitric acid treatment. EPR investigation of its electronic structure in comparison with pristine carbon nanotubes has revealed that the covalent cross-linking leads to a decrease in the number of paramagnetic centers, while the oxidation results in an increase in their number. The oxidation affects the cross-linked and pristine materials in a different manner  相似文献   

2.
The hierarchical structure of semidilute suspensions of single-walled carbon nanotubes in polymeric matrices, studied by the use of ultrasmall and small angle neutron scattering, indicates an aggregate size that is independent on both nanotube concentration and polymer matrix and a mesh within the floc that becomes slightly denser with increasing nanotube concentration. The number of clusters grows linearly with concentration of nanotubes. These structural parameters suggest that the interactions between the flocs dictate the concentration-dependent elastic strength scaling of the network, with the absolute values of the specific elastic strength being inversely related to the percolation threshold.  相似文献   

3.
Layered structures of well-aligned carbon nanotubes were grown using three variations of vapor-phase chemical vapor deposition growth processes. The reactants (typically ferrocene and benzene) were introduced either directly to a heated furnace or carried into the furnace by evaporation or spray pyrolysis in an argon flow. Thick mats of densely packed, well-aligned nanotubes were produced when the reactants were continuously introduced to the reaction; however, when the reactant flow was interrupted, the pauses allowed growth to stop and then restart as a new layer. These pauses were achieved by either completely stopping the reactant flow for a given time or by modifying the dispensing system to introduce the reactants in discrete drops. Time intervals between drops were varied between 20 s and 120 s, with distinct layers observed for pauses of 30 s or greater. The best results were achieved when drops of a catalyst-rich solution were alternated with drops of pure benzene. Layers were grown with thicknesses ranging from several microns to several hundred microns, and structures were grown with well over 100 layers.  相似文献   

4.
Core/shell nanostructures have received considerable attention due to the synergistic effect of their combination of materials. In this work, core/shell carbon/multi walled carbon nanotubes (MWNTs) (C-MWNTs) composed of core MWNTs and carbon shells were prepared to obtain a new type of carbon electrode materials. Carbon shells containing nitrogen groups were prepared by coating polyaniline (PANI) onto the MWNTs by in situ polymerization and subsequent carbonization at 850 °C. After carbonization, the C-MWNTs contained 5.84% nitrogen and showed a hollow structure and crystallinity like that of pristine MWNTs. In addition, the C-MWNTs exhibited electrochemical performance superior to that of pristine MWNTs, and the highest specific capacitance (231 F g−1) of the C-MWNTs was obtained at a scan rate of 0.1 A g−1, as compared to 152 F g−1 for pristine MWNTs. This superior performance is attributed to the maintenance of high electrical conductivity by the π–π interaction between the carbon layer and the MWNTs, increased specific surface area of C-MWNTs, and the presence of nitrogen groups formed on the carbon electrode after the carbonization of the shell PANI.  相似文献   

5.
Density gradient ultracentrifugation (DGU) and fluorescence spectroscopy are used to probe the limiting behaviors of the dynamic response of surfactant structure at the single-walled carbon nanotube (SWNT) surface to reorganizing forces, including changes in surfactant concentration and electrolyte screening. DGU results indicate that, as surfactant (sodium dodecyl sulfate, SDS) concentration is increased, SDS adsorbed on metallic SWNTs becomes limited in its ability to reorganize before SDS adsorbed on semiconducting species. A diameter-dependent enhancement is observed in photoluminescence intensities from semiconducting SWNTS upon initial titration with NaCl. This response to electrostatic screening diminishes as SDS concentration is increased. The results are understood as a saturation of the surfactant structural response, defined as both a loss in ability to increase SDS loading at the SWNT surface and a loss in ability to reorient surface structure in response to a reorganizing force. Saturation of response is found to be reversible and also occurs as a result of restricting SDS mobility. These results confirm several aspects of recent molecular dynamics simulations of SDS behavior on SWNTs and have important implications for tunability of density-based separation approaches using cosurfactant systems that include SDS.  相似文献   

6.
We propose a new type of carbon nanotube (CNT) motor composed of a single-wall CNT (SWCNT) and a double-wall CNT (DWCNT), that are in mechanical contact. The rotational motion of our CNT motor is controllable by the translational motion of the SWCNT along the axis of the DWCNT. From molecular dynamics simulations, we show how our CNT motor can be driven in a controlled manner.  相似文献   

7.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

8.
High resolution thermogravimetry has been used to evaluate the carbonaceous content in a commercial sample of single-walled carbon nanotube (SWNT). The content of SWNTs in the sample was found to be at least 77 mass% which was supported by images obtained with scanning and transmission electron microscopies (SEM and TEM). Furthermore, the influence of SWNT addition on the thermal stability of graphite in mixtures of SWNT/graphite at different proportions was investigated. The graphite stability decreased with the increased of SWNT content in the overall range of composition. This behavior could be due to the close contact between these carbonaceous species as determined by SEM analysis.  相似文献   

9.
Single-stranded DNA is an effective noncovalent dispersant for individual single-walled carbon nanotubes (CNTs) in aqueous solution, forming a CNT-DNA hybrid material that has advantages for CNT separations and applications. Atomic force microscopy (AFM) reveals a regular pattern on the surface of CNT-DNA. We found this pattern to be independent of the length and sequence of the wrapping DNA, yet different from the structures observed for CNTs dispersed with sodium dodecyl sulfate in the absence of DNA. We wrapped CNTs with thiol-modified DNA to form stable conjugates of CNT-DNA and core/shell CdSe/ZnS quantum dots; AFM imaging of these conjugates identified for the first time the location of DNA on the CNT-DNA nanomaterial. Our results suggest that the AFM pattern of CNT-DNA is formed by helical turns (approximately 14-nm pitch) of wrapped DNA strands that are closely arranged end-to-end in a single layer along the CNT. This work demonstrates the useful functionalization of CNTs with quantum dots in a manner that avoids direct, destructive modification of the CNT surface and suggests nearly complete surface coverage of the nanotubes with DNA.  相似文献   

10.
Highly aligned arrays of multiwalled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by chemical vapor deposition (CVD). The effect of the substrate design and the process parameters on the growth mechanism were studied. Adding water vapor to the reaction gas mixture of hydrogen and ethylene enhanced the growth which led to synthesis of longer CNT arrays with high density. Environmental scanning electron microscopy (ESEM), energy-dispersive spectroscopy (EDS), and atomic force microscopy (AFM) were used to analyze the CNT morphology and composition. Quadrupole mass spectroscopy (QMS) provided in-situ information on the gas spices within the reaction zone. On the basis of results, we verified the top growth mechanism and evaluated the reason of decline and stoppage of the CNT growth after extended period of deposition. Multilayered Si substrates with a top film of Al2O3, having appropriate roughness, provide favorable conditions to form catalyst islands with uniform distribution and size. Using water-assisted CVD process and optimized substrate design, our group succeeded to grow vertically aligned, patterned MWCNT up to 4-mm long. The arrays were of high purity and weak adhesion which allowed to be peeled off easily from the substrate.  相似文献   

11.
A composite ice nanotube inside a carbon nanotube has been explored by molecular-dynamics and grand canonical Monte Carlo simulations. It is made from an octagonal ice nanotube whose hollow space contains hydrophobic guest molecules such as neon, argon, and methane. It is shown that the attractive interaction of the guest molecules stabilizes the ice nanotube. The guest occupancy of the hollow space is calculated by the same method as applied to clathrate hydrates.  相似文献   

12.
We report the fabrication of a novel carbon structure consisting of uniform carbon nanotubes formed in the nanochannels of anodic aluminum oxide (AAO) templates, with the surface side open and connected by a uniform carbon sheet. The uniformity of the fabricated CNT arrays, plus the carbon film on the AAO surface interconnecting the open ends of all CNTs, constitute the major characteristics unique to our carbon structures. Some potential applications of such structures are noted.  相似文献   

13.
This paper presents a two-dimensional-in-space mathematical model of an amperometric biosensor based on an enzyme-loaded carbon nanotubes layer deposited on a perforated membrane. The developed model is based on non-linear non-stationary reaction-diffusion equations. By changing input parameters the output results are numerically analysed with a special emphasis to the influence of the geometry and the catalytic activity of the biosensor to its response. The numerical simulation at transition and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and experimental data was admissible at different concentrations of the substrate and the mediator.  相似文献   

14.
Controlled viscoelastic carbon nanotube fluids   总被引:2,自引:0,他引:2  
  相似文献   

15.
Phosphoryl choline-grafted water-soluble carbon nanotube   总被引:1,自引:0,他引:1  
Water-soluble property is the precondition of biomedical evaluation and application of carbon nanotube (CNT). Novel water- soluble CNT was synthesized in this letter by grafting phosphoryl choline (PC) onto multi-wall CNTs. Utilizing FTIR, XPS, TGA and TEM, the title CNTs were characterized and it was found that the target products could facilely dissolve in water. 2007 Tao Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   

16.
Voltage gated carbon nanotube membranes   总被引:2,自引:0,他引:2  
Membranes composed of an array of aligned carbon nanotubes, functionalized with charged molecular tethers, show voltage gated control of ionic transport through the cores of carbon nanotubes. The functional density of tethered charge molecules is substantially increased by the use of electrochemical grafting of diazonium salts. Functionality can be forced to occur at the CNT tip entrances by fast fluid flow of an inert solvent through the core during electrochemical functionalization. The selectivity between Ru(bi-pyridine)(3)2+ and methyl viologen2+ flux is found to be as high as 23 with -130 mV bias applied to the membrane as the working electrode. Changes in the flux and selectivity support a model where charged tethered molecules at the tips are drawn into the CNT core at positive bias. For molecules grafted along the CNT core, negative bias extends the tethered molecules into the core. Electrostatically actuated tethers induce steric hindrance in the CNT core to mimic voltage gated ion channels in a robust large area platform.  相似文献   

17.
Research on Chemical Intermediates - The novel composite membranes were prepared using multi-walled carbon nanotubes (MWCNTs) alone or incorporating graphene oxide (GO) via vacuum...  相似文献   

18.
Scanning transmission X-ray microscopy was demonstrated to deliver detailed local structure and chemical composition of a complicated system with titania nanoparticles dispersed inside and outside the double-walled carbon nanotube (DWNT) channels. Areas with inhomogeneous distribution of titania and the associated water were particularly investigated at the C K-edge, Ti L-edge, and O K-edge. The results show that titania nanoparticles located inside DWNTs are present as amorphous, while those unsuccessfully introduced into the channels behave more like bulk materials in forms of anatase and rutile. Strong interaction was detected between the confined titania and DWNTs, as evidenced by up to 0.6 eV energy shift at the Ti L-edge. Strong hydration was observed for the as-prepared samples. Functionalization due to reduction and oxidation between titania and carbon layer is observed upon heat-treatment. This detailed structural information of specific areas cannot be provided by other techniques such as HRTEM, XRD, and XANES.  相似文献   

19.
Based on the density functional theory, we obtain the optimum geometry of carbon chain inside a carbon nanotube. The phonon spectrum and specific heat of such a chain and nanotube hybrid system are calculated in terms of lattice dynamics theory. Some new phonon branches that have been obtained come from the coupling vibrations of the nanotube and the chain. The bending and stretching modes of the chain appear at about 520 cm(-1)and 1935 cm(-1) at Gamma point, respectively. It is found that the softening of G modes results mainly from the chain induced variations in the bond length on nanotube, independent of van der Waals interaction, while the stiffening of radial breathing mode is developed by the competition between the two factors. In the low-frequency region, the vibrational density of states are very different from that of the bare nanotube. Its specific heat implies the underlying quantized phonon structures and much large thermal conductivity in the hybrid system. In addition, the chain-length dependent vibration modes are calculated, from which it is expected that a finite chain of about 14 carbon atoms in the nanotube may produce the experimental Raman peak at about 1850 cm(-1).  相似文献   

20.
We use a polarization-modulation technique to investigate the optical anisotropy of multi- and single-wall carbon nanotubes suspended in a variety of solvents under simple shear flow. Measurements of birefringence and dichroism are performed as a function of shear rate, tube concentration, and solvent viscosity. At fixed volume fraction, the anisotropy increases with increasing shear stress due to enhanced flow alignment. At fixed shear stress, the anisotropy increases with volume fraction due to rotational excluded-volume interactions. By considering the rotational diffusivity as a function of nanotube length, diameter, concentration, and solvent viscosity, we demonstrate a leading-order scaling relation for the optical anisotropy in terms of rotary Peclet number Pe. At low Pe, our results are in qualitative agreement with the theoretical predictions of Doi and Edwards. At high Pe, our data suggest that the degree of nanotube alignment scales as Pe16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号