首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nonylphenol-substituted dodecyl sulfonate (C12-NPAS) was synthesized via sulfonation-alkylation-neutralization using 1-dodecene, SO3, and nonylphenol as raw materials. The properties such as surface tension, interfacial tension (IFT), wettability, foam properties, and salinity tolerance of C12-NPAS were systematically investigated. The results show that the critical micelle concentration (CMC) of C12-NPAS was 0.22?mmol?·?L?1 and the surface tension at the CMC (γCMC) of C12-NPAS was 29.4 mN/m. When compared with the traditional surfactants sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), and linear alkylbenzene sulfonate (LAS), the surface properties of C12-NPAS were found to be superior. The IFT between Daqing crude oil and a weak-base alkaline/surfactant/polymer (ASP) oil flooding system containing 0.1?wt% of C12-NPAS can reach an ultralow level of 2.79?×?10?3 mN/m, which was lower than that found for the traditional surfactant heavy alkylbenzene sulfonate (HABS). The salinity and hardness tolerance of C12-NPAS were much stronger than those found for conventional surfactants, petroleum sulfonate, and LAS. C12-NPAS also shows improved wetting performance, foamability, and foam stability.  相似文献   

2.
A new type of sulfonate gemini surfactant with three lipophilic alkyl chains (3C10-DS) was synthesized, and the structure of the product was confirmed by using the infrared spectrum and mass spectrum. Its critical micelle concentration (CMC) is 0.41 mmol/L, one order of magnitude lower than those of convectional (single-chain) surfactants, and the minimum surface tension is 27.6 mN/m. The interfacial tension (IFT) between the compound system of 3C10-DS and petroleum sulfonate (PS) and the simulated oil reaches ultra-low levels (10?3 mN/m), and there exists significant synergistic effect between 3C10-DS and PS. The compound flooding system consisting of polymer and the mixture of 3C10-DS and PS can effectively improve oil recovery for high-medium permeability cores and have a good application prospect in enhancing oil recovery.  相似文献   

3.
The ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16MIm]Br) has been used as a novel cationic surfactant for separation of phenolic compounds, including quinol, phloroglucinol, resorcinol, phenol, p-cresol, and m-nitrophenol, by micellar electrokinetic capillary chromatography (MEKC). The effects of buffer concentration and pH, concentration of [C16MIm]Br, and applied potential were studied. Use of the optimized buffer (25 mmol L?1 NaH2PO4), 10 mmol L?1 [C16MIm]Br, and an applied potential of ?15 kV enables optimum separation with regard to resolution and migration time. The phenolic compounds were detected at 214 nm. The micelle of this long-alkyl-chain imidazolium ionic liquid acts as a pseudo-stationary phase in this MEKC separation.  相似文献   

4.
Three model compounds for asphaltenes and two model compounds for the C80 isoprenoid tetraacids (ARN) have been synthesized and their interfacial and solubility properties were investigated. All compounds exhibit high interfacial activities. The asphaltene models lowered the interfacial tension between toluene and pH 9 to around 5 mN/m at 12.5–35 μM and the tetraacid models gave a drop in the interfacial tension between chloroform and pH 9 to 13 mN/m at only 5 μM, which is consistent with previous findings for the natural occurring C80 tetraacids. A sudden drop in the IFT over a very narrow concentration range was observed for two of three asphaltene models. NIR spectroscopy studies indicated an aggregation most likely a result of polar and hydrogen bond interactions. The IFT results also showed different behavior with only small changes in chemical structure. The tetraacid models have similar interfacial behavior as the C80 tetraacids and will thus be suitable model compounds with their highly UV active and fluorescent properties.  相似文献   

5.
Adsorption of surfactin, a powerful lipopeptide biosurfactant, at the air-liquid interface has been investigated in this article. The adsorption took place from buffered solutions containing relatively high concentrations of surfactin co- and counterions. Dynamic surface tension measurements were used to follow the self-assembly of surfactin at the interface until equilibrium surface pressure Π e is reached at a given surfactin concentration (C s). Gibbs adsorption equation in conjunction with the Langmuir adsorption isotherm was used to predict surfactin surface excess as a function of the biosurfactant concentration up to the critical micelle concentration (CMC). The predicted surface excess at saturation (Γ ) is 1.05?±?0.05 μmol m?2, corresponding to an area per molecule (A ) of 159?±?8 Å2. The adsorption equilibrium constant (K?=?(1.5?±?0.6)?×?106 M‐?1) was also estimated from the nonlinear regression of Π e???C s data in region B of the Π e???ln?C s plot. The value of K suggests that surfactin has strong affinity for the interface, which is in line with its known high surface activity. Gibbs elasticity (E G) of the interfacial surfactin monolayers, which is an important thermodynamic property, was also predicted at different surfactin concentrations. The limiting value (at the CMC) of E G was found to be 183 mN m?1, which is comparable to those reported in the literature for similar systems. The findings reported in this work reveal that the surface tension measurements coupled with appropriate theoretical analysis could provide useful information comparable to those obtained using highly sophisticated techniques.  相似文献   

6.
The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a K m of 55 μM and k cat of 10.3 s?1 while RPG16 was shown to have greater affinity for (GalpA)2 with a K m of 16 μM, but lesser catalytic activity with a k cat of 3.9 s?1. Both enzymes were inhibited by the product, galacturonic acid, with app K i values of 886 and 501 μM for RPG15 and RPG16, respectively. RPG15 exhibited greater affinity for (GalpA)3 with a K m of 9.2 μM and a similar k cat at 10.7 s?1 relative to (GalpA)2. Catalytic constants for RPG16 hydrolyzing (GalpA)3 could not be determined; however, single-injection ITC assays suggest a distinct preference and catalytic rate for (GalpA)3 relative to (GalpA)2. Thermodynamic parameters of a series of galacturonic acid oligomers binding to RPG15 were determined and exhibited some distinct differences from RPG16 binding thermodynamics, providing potential clues to the differing kinetic characteristics of the two exo-polygalacturonase enzymes.  相似文献   

7.
Using surface tension and fluorescence methods, the surface and solution properties of two cationic gemini surfactants {pentanediyl-1,5-bis(dimethylcetylammonium bromide) and hexanediyl-1,6-bis(dimethylcetylammonium bromide)} (referred to as 16-5-16 and 16-6-16) have been studied in the presence and absence of primary linear alkanols. Parameters studied include the critical micelle concentration (CMC), C 20 (the surfactant concentration required to reduce the surface tension of the solvent by 20 mN·m?1), Г max (maximum surface excess), and A min (minimum surface area per molecule). These parameters indicate mixed micelle formation and, therefore, surfactant-additive interaction parameters in mixed micelles and mixed monolayers, as well as activity coefficients, were calculated. A synergistic effect was observed in all instances and was found to be correlated with the chain length of the alkanols. The CMC values of 16-s-16 (s = 5, 6) decrease with increasing alkanol concentration and the extent of this effect follows the sequence: 1-octanol (C8OH) > 1-heptanol (C7OH) > hexan-1-ol (C6OH) > 1-pentanol (C5OH) > butanol (C4OH). The micelle aggregation number (N agg) of mixed micelles has been obtained using the steady state fluorescence quenching method. The micropolarity of gemini/alkanol systems has been evaluated from the ratio of intensity of peaks (I 1/I 3) of the pyrene fluorescence emission spectra. Results are interpreted on the basis of the structure of mixed micelles and monolayers.  相似文献   

8.
Cellulases can be used for biofuel production to decrease the fuel crises in the world. Microorganisms cultured on lignocellulosic wastes can be used for the production of cellulolytic enzymes at large scale. In the current study, cellulolytic enzyme production potential of Aspergillus fumigatus was explored and optimized by employing various cultural and nutritional parameters. Maximum endoglucanase production was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. Addition of 0.3 % of fructose, peptone, and Tween-80 further enhanced the production of endoglucanase. Maximum purification was achieved with 40 % ammonium sulfate, and it was purified 2.63-fold by gel filtration chromatography. Endoglucanase has 55 °C optimum temperature, 4.8 optimum pH, 3.97 mM K m, and 8.53 μM/mL/min V max. Maximum exoglucanase production was observed at 55 °C after 72 h, at pH 5.5, and 70 % moisture level. Further addition of 0.3 % of each of fructose, peptone, and Tween-80 enhances the secretion of endoglucanase. It was purified 3.30-fold in the presence of 40 % ammonium sulfate followed by gel filtration chromatography. Its optimum temperature was 55 °C, optimum pH was 4.8, 4.34 mM K m, and 7.29 μM/mL/min V max. In the case of β-glucosidase, maximum activity was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. The presence of 0.3 % of fructose, peptone, and Tween-80 in media has beneficial impact on β-glucosidase production. A 4.36-fold purification was achieved by 40 % ammonium sulfate precipitation and gel filtration chromatography. Optimum temperature of β-glucosidase was 55 °C, optimum pH was 4.8, K m was 4.92 mM, and V max 6.75 μM/mL/min. It was also observed that fructose is better than glucose, and peptone is better than urea for the growth of A. fumigatus. The K m and V max values indicated that endoglucanase, exoglucanase, and β-glucosidase have good affinity for their substrates.  相似文献   

9.
The behaviour of haemoglobin (Hb) at the interface between two immiscible electrolyte solutions (ITIES) has been examined for analytical purposes. When Hb is fully protonated under acidic conditions (pH <pI) in the aqueous phase, it undergoes a potential-dependent adsorption and complexation, at the interface, with the anions of the organic phase electrolyte. When utilised as a simple and fast preconcentration step, consisting of adsorbing the protein at the interface, in conjunction with voltammetric desorption, this opens up the ITIES to the adsorptive stripping voltammetry approach. Utilising a 60 s adsorption step and linear sweep voltammetry, a linear response to Hb concentration in aqueous solution over the range 0.01–0.5 μM was achieved. The equation of the best-fit straight line was I p ? =?7.46 C???0.109, R?=?0.996, where I p is the peak current (in nanoampere) and C is haemoglobin concentration (in micromolar). The calculated detection limit (3σ) was 48 nM for a 60 s preconcentration period, while the relative standard deviation was 13.3 % for six successive measurements at 0.1 μM Hb. These results illustrate the prospects for simple, portable and rapid label-free detection of biomacromolecules offered by electrochemistry at arrays of liquid–liquid microinterfaces.  相似文献   

10.
11.
Suspension cultures of Abronia nana were established to produce C-methylisoflavones. Treatment of the A. nana cultures with yeast elicitor induced boeravinone E (1), with maximum induction at 24 h after elicitor treatment. Of the biotic and abiotic elicitors tested, yeast extract gave the strongest induction of 1. The IC50 value of 1 against β-secretase (β-amyloid cleaving enzyme-1) was 5.57 μM. Other proteases such as trypsin, chymotrypsin, and elastase were not inhibited by concentrations up to 1.0 mM, indicating that inhibition of β-secretase was specific. 1 was noncompetitive in Dixon plot, and Ki value was 3.79 μM.  相似文献   

12.
The chromatographic behaviour of bupropion hydrochloride, a basic drug of pK a 7.9, has been investigated under reversed-phase ion-pairing conditions and the results were used to develop a method for analysis of bupropion hydrochloride in pharmaceuticals. Chromatographic separation of bupropion hydrochloride and carbamazepine (used as internal standard) was performed on a C8 column (150 mm × 4.6 mm i.d., 3.5-μm particle), with 40:10:50 (v/v) methanol–acetonitrile–phosphate buffer (20 mm, pH 3.0), containing 10 mm 1-heptane sulfonic acid sodium salt (1-HSA), as optimum mobile phase at a flow rate of 1.0 mL min?1. UV detection was at 254 nm. The fully validated method enables reproducible and selective analysis of bupropion hydrochloride in pharmaceuticals.  相似文献   

13.
The present paper describes the use of different solvent mixtures to extract from fish various sulfophenylcarboxylic acids (SPCs of C6 to C13), and their originating compounds, linear alkylbenzene sulfonates (LAS of C10 to C13). The analytical method utilized involves pressurized liquid extraction, followed by preconcentration of the samples, purification by solid-phase extraction, and finally identification and quantification of the target compounds by high-performance liquid chromatography-mass spectrometry using a system equipped with an electrospray interface operating in negative ion mode. The SPCs and LAS were extracted from spiked fish first with hexane to remove interference from fats, then with different mixtures of solvents: dichloromethane followed by methanol; 50:50 dichloromethane-methanol; and 30:70 dichloromethane-methanol. The LAS recoveries obtained with these three extraction options were high (between 68.5 and 80.8%); however, owing to the low percentages obtained for SPC homologues (13.5, 13.1, and 15.9%, respectively), another extraction procedure with methanol was developed in order to increase these recoveries. The percentage of recovery for total SPCs with the methanolic extraction was higher (90.1%), with a standard deviation of 9.9, and the LAS recoveries also increased (99.9%). Detection limits were between 1 and 22 ng g?1 for LAS, and between 1 and 58 ng g?1 for SPCs. Quantitation limits were between 4 and 73 ng g?1 for LAS, and between 2 and 193 ng g?1 for SPCs. This method has been applied to measure the biotransformation of 2ØC10 LAS (where Ø is a sulfophenyl group) in fish exposed in a flow-through system, and enabled the separation and identification of SPCs from 5ØC6 to 9ØC10.  相似文献   

14.
A novel electrochemical sensor for para-nitrophenol (p-NP) was constructed with graphene–Au composite containing 10 % Au (G–Au 10 %). In the composite, Au nanoparticles with the size of ca. 11 nm were regularly scattered on graphene sheet without aggregation, which offers dramatically higher electrocatalytic activity on the redox of K3[Fe(CN)6]/K4[Fe(CN)6] couple than sole Au nanoparticles. Compared to sole Au nanoparticles, the G–Au 10 % also exhibited dramatically improved electrocatalytic activity on the reduction of p-NP. Amperometric detection of p-NP at G–Au 10 % modified electrode displayed a wide linear range of 0.47–10.75 mM with detection limit of 0.47 μM and a high sensitivity of 52.85 μA/mM. Considering the thrifty in utilization of noble Au, the G–Au 10 % can be successfully applied as a low-cost and powerful sensing material for trace detection of p-NP.  相似文献   

15.
For the purpose of studying the potential of a novel nonionic switchable surfactant, 11-ferrocenylundecyl polyoxyethylene ether (FPEG), applied to surfactant-enhanced remediation (SER), the surface properties and micelle solubilization behavior of FPEG were investigated with different inorganic salts. With the addition of inorganic salts (NaCl and CaCl2), the critical micelle concentration (CMC) of FPEG dropped from 15 to 12 and 8 mg·L?1, respectively, due to the salting-out effect on the alkyl chain. Thermodynamic parameters based on the CMCs indicated that micelle formation was an entropy-driven process. Dynamic light scattering measurements verified that these inorganic salts can decrease the hydrodynamic diameters (D h) of the micelles. Solubilization experiments with three typical polycyclic aromatic hydrocarbons (PAHs) demonstrated that the system of FPEG with NaCl shows the highest solubilization ability, and the molar solubilization ratio and micelle–water partition coefficient (K m ) values follow the order pyrene > phenanthrene > acenaphthene. After oxidation, PAHs can be released from the micelles through breaking up of the micelles, and the cumulative release efficiency of pyrene, phenanthrene and acenaphthene are 31.2, 42.8 and 44.6 %; the order of release efficiency is opposite to that of the reduced form for solubilization abilities. All the results suggest that the ferrocene-containing, redox-active surfactant FPEG has the potential to be recycled in SER technology through electrochemistry approaches.  相似文献   

16.
A series of anionic gemini surfactants have been synthesized. The surface properties and micellization process of as-prepared sulfonate gemini surfactants (SGS) and carboxylate gemini surfactant (CGS) have been studied by surface tension measurement and isothermal titration microcalorimetry. Meanwhile, the interaction of these five surfactants with polyacrylamide (PAM) was investigated using surface tension, steady-state fluorescence measurement, and isothermal titration microcalorimetry. The results show that the critical micelle concentrations (CMCs) of above-mentioned surfactants are more than 1 order of magnitude lower than those of corresponding single chain surfactants. Moreover, the enthalpy of micelle formation (ΔH mic) for the investigated gemini surfactants is negative. In the surfactant–PAM systems, the thermodynamic parameters of binding have also been determined. The conclusion may be drawn that the binding strength of SGS onto PAM is stronger than that of CGS, resulting from more compact structure of SGS aggregates. With increasing surfactant hydrophobicity, the values of ΔH agg become more exothermic and a ΔS agg decrease was observed. Therefore, the interaction between SGS and PAM is enthalpy-driven.  相似文献   

17.
A forced degradation study on ropinirole hydrochloride in bulk and in its modified release tablets was conducted under the conditions of hydrolysis, oxidation and photolysis in order to develop an isocratic stability-indicating LC-UV method for quantification of the drug in tablets. An impurity peak in standard solution was found to increase under acidic and neutral hydrolytic conditions while another degradation product was formed under alkaline condition. The drug and its degradation products were optimally resolved on a Hypersil C18 column with mobile phase composed of diammonium hydrogen orthophosphate (0.05 M; pH 7.2), tetrahydrofuran and methanol (80:15:5% v/v) at a flow rate of 1.0 mL min?1 at 30 °C using 250 nm as detection wavelength. The method was linear in the range of 0.05–50 μg mL?1 drug concentrations. The %RSD of inter- and intra-day precision studies was <1. The system suitability parameters remained unaffected during quantification of the drug on three different LC systems. Excellent recoveries (101.59–102.28%) proved that the method was sufficiently accurate. The LOD and LOQ were found to be 0.012 and 0.040 μg mL?1, respectively. Degradation behaviour of the drug in both bulk and tablets was similar. The drug was very unstable to hydrolytic conditions but stable to oxidative and photolytic conditions. The method can be used for rapid and accurate quantification of ropinirole hydrochloride in tablets during stability testing. Based on chemical reactivity of ropinirole in different media, the degradation products were suspected to be different from the known impurities of the drug.  相似文献   

18.
The density, sound velocity, and conductivity measurements were performed on aqueous solutions of sodium dodecyl sulfate (C12H25SO4Na) or sodium dodecyl sulfonate (C12H25SO3Na) in the absence and presence of poly(ethylene glycol) (PEG) at different temperatures. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of C12H25SO4Na and C12H25SO3Na were determined. Variations of the critical micelle concentrations (CMCs) of both surfactants in the solutions investigated with temperature were obtained from which thermodynamic parameters of micellization were estimated. It was found that at low temperature the micelle formation process is endothermic and therefore, this process must be entropically driven. However, upon increasing the temperature, the enthalpic factor becomes more significant and, at temperatures higher than 303.15 K the micellization is enthalpy driven. The interactions between C12H25SO4Na/C12H25SO3Na and PEG were studied and it was found that sodium alkyl sulfonates were seen to interact more weakly than their sulfate analogues.  相似文献   

19.
This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min?1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL?1 (r = 0.9999) for TR and 40–160 μg mL?1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.  相似文献   

20.
Dilational rheological behaviors of adsorption layers of three surfactants, sodium 2-hydroxy-3,5-dioctyl benzene sulfonate (C8C8), sodium 2-hydroxy-3-octyl-5-decyl benzene sulfonate (C8C10), and sodium 2-hydroxy-3-octyl-5-dodecylbenzenesulfonate (C8C12) formed at air–water and decane–water interfaces, have been investigated as a function of concentration and frequency (0.002–0.1 Hz) by the oscillating bubble/drop method. The experimental results show that the dilational moduli of hydroxy-substituted alkyl benzenesulfonates are obviously higher than those of the common surfactants, because the interfacial interactions between alkyl chains are improved drastically by the unique arrangement of C8C8 molecules at the interface. However, the moduli at the decane–water interface are much lower than those at the surfaces because decane molecules will insert into the surfactant molecules adsorbed at the interface and destroy the interactions between alkyl chains. With an increase in the number of carbon atom of 5-alkyl, the surface dilational modulus decreases because the orientation of the surfactant molecules at the surface varies from parallel to tilt. On the other hand, the diffusion-exchange process dominates the interfacial behavior and the interfacial modulus improves with the increase in the length of the alkyl chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号