首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed micelle formation of binary cationic gemini (12-s-12, s=4, 6) and zwitterionic (N-dodecyl-N,N-dimethylglycine, EBB) surfactants has been investigated by measuring the surface tension of aqueous solution as a function of total concentration at various pH values from acidic to basic, under conditions of 298.15 K and atmospheric pressure. The results were analyzed by applying regular solution theory (RST), and Motomura's theory, which allows for the calculation of the excess Gibbs energy of micellization purely on the basis of thermodynamic equations. The synergistic interactions of all the investigated cationic gemini + zwitterionic surfactants mixtures were found to be dependent upon the pH of the solution and the length of hydrophobic spacer of gemini surfactant. The evaluated excess Gibbs free energy is negative for all the systems.  相似文献   

2.
Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds.  相似文献   

3.
Cationic liposomes have been extensively studied from the experimental and theoretical standpoints, motivated both by their fundamental interest and by potential applications in drug delivery and gene therapy. However, a detailed understanding of the nature of interactions within mixed bilayers containing cationic gemini surfactants is still lacking. This work focuses on the structural and dynamic properties of DODAB membranes in the presence of dicationic gemini surfactants. A thermodynamic characterization of the phase transitions in the mixed systems has been carried out by differential scanning calorimetry, while insight into the molecular interactions in the bilayer has been provided by molecular dynamics. For this purpose, variations in the gemini spacer and tail length, as well as in the respective molar fraction, have been included in both experimental and simulation studies. The results indicate that the influence of cationic gemini surfactants upon the thermotropic behavior and degree of order of DODAB structures is controlled by a complex interplay between charge density, conformation and hydrophobic effects, for which a detailed rationale is provided.  相似文献   

4.
The mixed micelle formation of binary cationic 14-s-14 gemini with conventional single chain surfactants was studied by conductivity measurements.The critical micelle concentration(cmc) and the degree of counterion binding values(g) of the binary systems were determined.The results were analyzed by applying regular solution theory(RST) to calculate micellar compositions(X),activity coefficients(f1,f2),and the interaction parameters(β).The synergistic interactions of all the investigated cationic gemini+conventional surfactant combinations were found to be dependent upon the length of hydrophobic spacer of the gemini surfactant.The excess Gibbs free energy of mixing was evaluated,and it indicated relatively more stable mixed micelles for the binary combinations.  相似文献   

5.
Conductance (kappa), pyrene fluorescence (I1/I3), cloud point (C(P)), and Krafft temperature (K(T)) measurements have been carried out for various dimethylene bis(alkyldimethylammonium bromide) (gemini) surfactants with different poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock polymers (TBP). From the kappa and I1/I3 studies, the critical micelle concentrations of mixed micelle formation between the gemini and TBP have been determined using regular solution theory. It has been observed that mixed micelle formation in all the binary mixtures of gemini+TBP occurs due to the unfavorable mixing, the magnitude of which decreases with increased hydrophobicity of the gemini component. The results are further supported by evaluating the mean micelle aggregation number and enthalpy of fusion from fluorescence and Krafft temperature measurements, respectively.  相似文献   

6.
Zwitterionic gemini surfactants, which have the advantages of both zwitterionic and gemini surfactants, have been widely used in various disciplines. Sulfobetaine-type zwitterionic gemini surfactants consisting of 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (2CnSb with 6, 8 and 10 carbon atoms) were evaluated for their interfacial activities at the water/crude oil interface. The 2C10Sb molecules showed a remarkable ability to decrease the interface tension (IFT) of water/crude oil, and the degree of decrease was much greater than those in either zwitterionic or gemini surfactant systems by at least two orders of magnitude. Furthermore, the effects of salts (NaCl, CaCl2, and MgCl2) on the IFT of the 2C10Sb system were thoroughly investigated. Interestingly, the delicate balance between the effects of additional cations and the intramolecular interactions of 2C10Sb molecules played crucial roles in the interfacial arrangements of 2C10Sb molecules, which were mainly dependent on the bonding abilities of the cations. Moreover, a zwitterionic surfactant and a cationic gemini surfactant were employed in control experiments to verify the proposed mechanisms.  相似文献   

7.
An evaluation of the physical interactions between gemini surfactants, DNA, and 1,2-dialkyl-sn-glycero-3-phosphoethanolamine helper lipid is presented in this work. Complexation between gemini surfactants and DNA was first investigated using surface tensiometry where the surface tension profiles obtained were found to be consistent with those typically observed for mixed surfactant-polymer systems; that is, there is a synergistic lowering of the surface tension, followed by a first (CAC) and second (CMC) break point in the plot. The surfactant alkyl tail length was observed to exhibit a significant effect on the CAC, thus demonstrating the importance of hydrophobic interactions during complexation between gemini surfactants and DNA. The second study presented is an investigation of the mixing interactions between gemini surfactants and DOPE using Clint's, Rubingh's, and Motomura's theories for mixed micellar formation. The mixing interactions between the 16-3-16/16-7-16/16-12-16/16-7NH-16 gemini surfactants and DOPE were observed to be antagonistic, where the strength of antagonism was found to be dependent upon the gemini surfactant spacer group and the solution composition.  相似文献   

8.
The critical micelle concentration (CMC) has been determined for the gemini surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium bromide)12-s-12,2Br?1 by means of electricity conductivity measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic head group, geminis have CMC values well below those of conventional single-chain cationic surfactants. The CMC of 12-3-12 reduces with the addition of n-alcohol except ethanol and with the increase of n-alcohol chain length as well as increase of concentration of n-butanol and sodium chloride. Steady-state fluorescence quenching technology has been employed to study the aggregation number of micelle, which increases with increase in the length of n-alcohol. The Kraft temperature measurements also indicate that the stability of solid surfactant hydrate decreases along with the improvement of concentration of n-butanol and sodium chloride.  相似文献   

9.
Three novel anionic sulfonate gemini surfactants, sodium 4,4'-(10,19-dioxo-9,11,18,20-tetraazaoctacosane-9,20-diyl) dibenzenesulfonate (Surfactant I), sodium 4,4'-(12,21-dioxo-11,13,20,22-tetraazadotriacontane-11,22-diyl) dibenzenesulfonate (Surfactant II), and sodium 4,4'-(14,23-dioxo-13,15,22,24-tetraazahezatriacontane-13,24-diyl) dibenzenesulfonate (Surfactant III), with different lengths of hydrophobic tail have been synthesized, and their assembly behavior in the presence of bovine serum albumin (BSA) has been studied using spectral methods and molecular modeling methods at physiological pH and 298 K. Critical micelle concentrations (CMCs) of the three surfactants have been determined by surface tension measurements. Despite the obvious decrease of CMC with the increase of tail length, fluorescence spectra have shown much closer CAC in the presence of BSA. Surfactant II shows the highest CAC of 3.19 × 10(-5) mol L(-1) compared with the other two. The polarity of the microenvironment in BSA-surfactant systems has been investigated using pyrene as the probe. In addition, far-UV CD spectra studied the change of the secondary structure content of BSA caused by the three surfactants. The features of the assembly behavior were discussed by three concentration regions. Surfactant II could unfold the protein much more efficiently than the other two surfactants at low concentration, but at high concentration, the change of the secondary structure and the formation of hydrophobic microenvironment show a direct relationship to the length of the hydrophobic tail with the increase of the surfactant concentration.  相似文献   

10.
A series of homologous gemini surfactants possessing identical hydrophobic chains but different ionic head groups (cationic, anionic, zwitterionic) were synthesized, and their aqueous solution properties were examined. The results showed that the surface activities of gemini surfactants are superior to those of corresponding conventional monomeric surfactants, and molecular arrangements of gemini surfactants at the air-water interface are tighter than those of corresponding conventional surfactants. It was also found that zwitterionic gemini surfactant possesses the highest surface activity among the three surfactants. The behavior at the air-water interface is closely related to the molecular structural features of surfactants, which provide an indication for synthesizing highly-efficient surfactants.   相似文献   

11.
Interfacial, γ, and fluorescence measurements have been performed to evaluate the synergism in mixed cationic and zwitterionic phospholipid systems, viz. dodecyltrimethylammonium bromide plus 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), tetradecyltrimethylammonium bromide plus DHPC, and hexadecyltrimethylammonium bromide plus DHPC mixtures. From the γ data the maximum surface excess and minimum area per molecule were computed and it was found that the former decreases and the latter increases with the increase in the fraction of cationic component in the binary mixture. Application of regular solution theory demonstrated that strong synergistic interactions are present which increase with the increase in length of the hydrocarbon tail of the cationic surfactant component. These interactions were considerably less in the monolayers than in the mixed micelles. The aggregation number, N agg, of DHPC shows a significant decrease upon induction of the cationic component and vice versa. The decrease in N agg is explained on the basis of an increase in the total polarity of the mixed micelles.  相似文献   

12.
Micellization of an amphiphilic phenothiazine drug promethazine hydrochloride (PMT) in presence of conventional (CTAB and TTAB) as well as gemini (16-s-16 and 14-s-14, s=4-6) cationic surfactants has been studied conductometrically at different temperatures. Critical micelle concentration values (cmc and cmc(id)) indicate mixed micelle formation among the two components. Micellar mole fractions of surfactants (X(1), X(1)(M) and X(1)(id)) show greater contribution of surfactants. Interaction parameter, β, suggests attractive interactions in the mixed systems. The thermodynamic parameters suggest dehydration of hydrophobic part of the drug at higher temperatures.  相似文献   

13.
Understanding factors responsible for the fluorescence behavior of conjugated polyelectrolytes and modulation of their behavior are important for their application as functional materials. The interaction between the anionic poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}copolymer (PBS-PFP) and cationic gemini surfactants alpha,omega-(CmH2m+1N+(CH3)2)2(CH2)s(Br-)2 (m-s-m; m=12, s=2, 3, 5, 6, 10, and 12) has been studied experimentally in aqueous solution. These surfactants are chosen to see whether molecular recognition and self-assembly occurs between the oppositely charged conjugated polyelectrolyte and gemini surfactant when the spacer length on the surfactant is similar to the intercharge separation on the polymer. Without surfactants, PBS-PFP exists as aggregates. These are broken up upon addition of gemini surfactants. However, as anticipated, the behavior strongly depends upon spacer length (s). Fluorescence measurements show three surfactant concentration regimes: At low concentrations (<2x10(-6) M) quenching occurs and is most marked with the small spacer 12-2-12; at intermediate concentrations (approximately 2x10(-6)-10(-3) M), fluorescence intensity is constant, with a 12-carbon spacer 12-12-12 showing the strongest fluorescence; above the critical micelle concentration (CMC; approximately 10(-3) M) increases in emission intensity are seen in all cases and are largest with the intermediate spacers 12-5-12 and 12-6-12, where the spacer length most closely matches the distance between monomer units on the polymer. With longer spacer length surfactants, surface tension measurements for concentrations below the CMC reveal the presence of polymer-surfactant aggregates at the air-water interface, possibly reflecting increased hydrophobicity. Above the CMC, small-angle neutron scattering experiments for the 12-6-12 system show the presence of spherical aggregates, both for the pure surfactant and for polyelectrolyte/gemini mixtures. Molecular dynamics simulations help rationalize these observations and show that there is a very fine balance between electrostatic and hydrophobic interactions. With the shortest spacer 12-2-12, Coulombic interactions are dominant, while for the longest spacer 12-12-12 the driving force involves hydrophobic interactions. Qualitatively, with the intermediate 12-5-12 and 12-6-12 systems, the optimum balance is observed between Coulombic and hydrophobic interactions, explaining their strong fluorescence enhancement.  相似文献   

14.
A series of partially fluorinated cationic gemini surfactants and their corresponding monomeric surfactants have been studied by isothermal titration microcalorimetry. The critical micelle concentration (CMC) and enthalpy of micellization (DeltaH(mic)) were obtained from calorimetric curves. The CMCs of the gemini surfactants are much lower than those of the corresponding monomeric surfactants and decrease with an increase in the number of fluorine atoms on the hydrophobic chain. The micellization of partially fluorinated cationic gemini surfactants is much more exothermic than that of the corresponding monomeric surfactants. Because of the incompatibility of hydrocarbon spacer and partially fluorinated chain, DeltaH(mic) values of the surfactants with a C6 spacer are more negative than those of the surfactants with a C12 spacer. The variations in the architecture of the fluorocarbon chain segments may be the reason of the irregularities in the change of DeltaH(mic) for the gemini surfactants. Moreover, the contribution of the enthalpy generally increases with an increase in the number of fluorine atoms.  相似文献   

15.
α-环糊精与季铵盐型双子表面活性剂包结作用的研究   总被引:1,自引:0,他引:1  
在293.15 K下用微量热法结合核磁共振波谱研究了α-环糊精与三种阳离子型双子表面活性剂((CnN)2Cl2, n=12, 14, 16) 在水溶液中的包结作用. 实验结果表明, 包结物都相当稳定, 且随着疏水链CnH2n+1中碳原子数目的增加, 主-客体包结物的化学计量比由2∶1为主变为6∶1为主, 最大化学计量比的主-客体包结物形成过程的标准焓变(ΔHӨ) 和标准熵变(ΔSӨ) 均为负值且绝对值逐渐增大. 包结物的形成均属焓驱动过程. 1H核磁共振数据表明, (C12H25N)2Cl2的存在使α-环糊精上各质子的化学位移向高场移动, 从微观上证明了包结作用的发生.  相似文献   

16.
A series of novel gemini cationic surfactants alkanediyl-alpha,omega-bis (hydroxyethylmethylhexadecylammonium bromide) with polymethylene spacer chain length of 4, 6, 8, and 10 carbon atoms was synthesized and characterized. Critical micellar concentrations of the gemini surfactants in aqueous solutions as determined by the surface tension and conductance measurements were observed to be in the range 1.39-3.63 microM. The critical micellar concentration was observed to increase initially with spacer length up to 6 methylene groups and to decrease thereafter with the increase in spacer length. The micellar microstructure in aqueous solutions examined through small angle neutron scattering (SANS) revealed that the extent of aggregation growth and variation in shapes of micelles strongly depend on head group polarity, spacer chain length, and temperature. The propensity to micellar growth with spacer chain length 4 was found to be much higher than with the longer spacer lengths. The fractional charge on the micelle increases with increased spacer chain length and temperature.  相似文献   

17.
A series of monomeric and dimeric cationic surfactants with tuned polarity was synthesized. Oil solubilization capacity, thermotropic liquid crystalline properties, and minimum inhibitory concentration (MIC) of novel hydroxylated cationic surfactants using selected gram positive and gram negative bacteria were examined. Antibacterial activity and the propensity of gemini surfactants for oil solubilization were observed to be better than those of corresponding monomeric surfactants. Pseudo ternary phase diagrams for these surfactants, methyl methacrylate (MMA), and water clearly showed, that microemulsions can be easily formulated with all these surfactants. Solubilization and foam studies of mixed surfactant systems were also examined. Molecular architecture like the tail length, head group area, and presence of ethanolic goups in the surfactant affect the performance properties. Unlike conventional gemini surfactants the synthesized gemini surfactants also show thermotropic liquid crystalline properties (smectic‐A, Lα phase).  相似文献   

18.
The mixed micellar properties of a triblock copolymer, Pluronic L64, (EO)13(PO)30(EO)13, and a nonionic surfactant, Triton X-100, in aqueous solution with conventional alkyl ammonium bromides and their dimeric homologues were investigated with the help of fluorescence and cloud point measurements. The composition of mixed micelles and the interaction parameter, beta, evaluated from the critical micelle concentration (cmc) data for different mixtures using Rubingh's and Motomura's theories are discussed. It has been observed that the mixed micelle formation between monomeric/dimeric alkyl ammonium bromides and L64 was due to synergistic interactions which increase with the increase in hydrophobicity of the cationic component. On the other hand, synergistic mixing was observed in the mixed micelles of Triton X-100 and monomeric cationic surfactants, the magnitude of which decreases slightly with the increase in hydrophobicity of the cationic component. Antagonistic interactions were observed in the case of Triton X-100 and dimeric cationic surfactants.  相似文献   

19.
A new series of pyridinium cationic gemini surfactants was prepared by quaternization of the 2,2'-(alpha,omega-alkanediyl)bispyridines with N-alkylating agents, whose reactivity is briefly discussed. Particularly useful was the use of long-chain alkyl triflates (trifluoromethanesulfonates) for both overcoming the sterical hindrance in the pyridines and obtaining higher synthetic yields. Well-known 4,4'-(alpha,omega-alkanediyl)bis(1-alkylpyridinium) structures showed narrow temperature ranges for practical applications, due to their high Krafft points, while the new 2,2'-(alpha,omega-alkanediyl)bis(1-alkylpyridinium) series, accounted for good surface active properties. Due to the Krafft points below 0 degrees C, they could be exploited as solutions in water at any temperature. The characterization of the behavior of the series was performed by conductivity measurements. Some of the proposed structures exhibited unusual surface active behavior, which was interpreted in terms of particular conformational arrangements.  相似文献   

20.
The interactions of cationic gemini surfactants, 1,2-bis(alkyldimethylammonio)ethane dibromide (m-2-m: m is hydrocarbon chain length, m = 10 and 12), and an anionic polymer, sodium poly(styrene sulfonate) (PSS), have been characterized by several techniques such as tensiometry, fluorescence spectroscopy, and dynamic light scattering. The surface tension of gemini surfactant/PSS mixed systems decreases with surfactant concentration, reaching break points, which are taken as critical aggregation concentrations (cac). The surface tension at the cac of mixtures is higher than that of single surfactants, and it is found that at concentrations above the cac, the surfactant molecules are associated with the polymer in the bulk. The 12-2-12/PSS mixed system shows higher surface activity than both 10-2-10/PSS and the monomeric surfactant of dodecyltrimethylammonium bromide/PSS systems. Fluorescence measurements of these mixed systems suggest the formation of a complex with a highly hydrophobic environment in the bulk of the solution. Additionally, dynamic light scattering measurements show that the hydrodynamic diameter of the 12-2-12/PSS mixed system is smaller than that of PSS only at low concentration, indicating interactions between surfactant and polymer. These result from the electrostatic attraction between ammonium and sulfate headgroups as well as the hydrophobic interaction between their hydrocarbon chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号