首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-enhanced Raman scattering for protein detection   总被引:1,自引:0,他引:1  
Proteins are essential components of organisms and they participate in every process within cells. The key characteristic of proteins that allows their diverse functions is their ability to bind other molecules specifically and tightly. With the development of proteomics, exploring high-efficiency detection methods for large-scale proteins is increasingly important. In recent years, rapid development of surface-enhanced Raman scattering (SERS)-based biosensors leads to the SERS realm of applications from chemical analysis to nanostructure characterization and biomedical applications. For proteins, early studies focused on investigating SERS spectra of individual proteins, and the successful design of nanoparticle probes has promoted great progress of SERS-based immunoassays. In this review we outline the development of SERS-based methods for proteins with particular focus on our proposed protein-mediated SERS-active substrates and their applications in label-free and Raman dye-labeled protein detection. Figure Protein-mediated SERS-active substrates for protein detection  相似文献   

2.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

3.
Surface-enhanced Raman scattering (SERS) is a potent tool in bioanalytical science because the technique combines high sensitivity with molecular specificity. However, the widespread and routine use of SERS in quantitative biomedical diagnostics is limited by tight requirements on the reproducibility of the noble metal substrates used. To solve this problem, we recently introduced a novel approach to reproducible SERS substrates. In this contribution, we apply ultrafast time-resolved spectroscopy to investigate the photo-induced collective charge-carrier dynamics in such substrates, which represents the fundamental origin of the SERS mechanism. The ultrafast experiments are accompanied by scanning-near field optical microscopy and SERS experiments to correlate the appearance of plasmon dynamics with the resultant evanescent field distribution and the analytically relevant SERS enhancement. Figure Ultrafast time-resolved differential absorption spectroscopy combined with scanning near-field optical microscopy (left) and atomic force microscopy (right) yields insight into the photoinduced charge-carrier dynamics in innovative reproducible SERS-substrates Dana Cialla and Ronald Siebert contributed equally to this work.  相似文献   

4.
An overview is presented on the application of surface-enhanced infrared absorption (SEIRA) spectroscopy to biochemical problems. Use of SEIRA results in high surface sensitivity by enhancing the signal of the adsorbed molecule by approximately two orders of magnitude and has the potential to enable new studies, from fundamental aspects to applied sciences. This report surveys studies of DNA and nucleic acid adsorption to gold surfaces, development of immunoassays, electron transfer between metal electrodes and proteins, and protein–protein interactions. Because signal enhancement in SEIRA uses surface properties of the nano-structured metal, the biomaterial must be tethered to the metal without hampering its functionality. Because many biochemical reactions proceed vectorially, their functionality depends on proper orientation of the biomaterial. Thus, surface-modification techniques are addressed that enable control of the proper orientation of proteins on the metal surface. Figure Surface enhanced infrared absorption spectroscopy (SEIRAS) on the studies of tethered protein monolayer (cytochrome c oxidase and cytochrome c) on gold substrate (left), and its potential induced surface enhanced infrared difference absorption (SEIDA) spectrum  相似文献   

5.
Sum-frequency generation (SFG) is a nonlinear laser-spectroscopy technique suitable for analysis of adsorbed molecules. The sub-monolayer sensitivity of SFG spectroscopy enables vibrational spectra to be obtained with high specificity for a variety of molecules on a range of surfaces, including metals, oxides, and semiconductors. The use of ultra-short laser pulses on time-scales of picoseconds also makes time-resolved measurements possible; this can reveal ultrafast transient changes in molecular arrangements. This article reviews recent time-resolved SFG spectroscopy studies revealing site-hopping of adsorbed CO on metal surfaces and the dynamics of energy relaxation at water/metal interfaces. Time-resolved sum frequency generation spectroscopy at surfaces with non-resonant laser pulse irradiation  相似文献   

6.
This study describes the application of Raman spectroscopy to the detection of drugs of abuse and noncontrolled substances used in the adulteration of drugs of abuse on human nail. Contamination of the nail may result from handling or abusing these substances. Raman spectra of pure cocaine hydrochloride, a seized street sample of cocaine hydrochloride (77%), and paracetamol could be acquired from drug crystals on the surface of the nail. An added difficulty in the analytical procedure is afforded by the presence of a nail varnish coating the nail fragment. By using confocal Raman spectroscopy, spectra of the drugs under nail varnish could be acquired. Spectra of the drugs could be readily obtained nondestructively within three minutes with little or no sample preparation. Raman spectra could be acquired from drug particles with an average size of 5–20 μm. Acquisition of Raman point maps of crystals from both pure and street samples of cocaine hydrochloride under nail varnish is also reported. Figure Raman spectrum and point Raman map of cocaine HCI  相似文献   

7.
Thin nanoporous alumina obtained by anodization of aluminum films offers promising advantages for application in fluorescence-based biological sensors including convenient preparation, increased density of binding sites, and improved collection efficiency of fluorescence. These advantages are illustrated in the detection of streptavidin using biotin covalently bound to the surface of alumina nanopores. Fluorescence intensity enhancement as high as 7 times is observed in nanopores in comparison to flat glass surface.   相似文献   

8.
Toxicological implications of exposure to bioavailable platinum group metals, here Pd, Pt, and Rh, are still to be clarified. This study obtained by a biosensor-based method preliminary information on potential effects on cellular metabolism as well as on possible tolerance mechanisms. Aerobic respiration was taken as the toxicological end point to perform tandem tests, namely functional toxicity test and tolerance test. Cells were suspended in the absence of essential constituents for growth. The dose–response curves obtained by exposure (2 h) to the metals (nanogram per gram range) suggested the same mechanisms of action, with Rh showing the greatest curve steepness and the lowest EC50 value. Conservative (95% lower confidence interval) EC10 values were 187, 85 and 51 ng g−1 for Pt, Pd, and Rh respectively. Tolerance patterns were tested during the same runs. The full tolerance obtained after 12 h of exposure to each metal suggested mitochondrial inhibition of aerobic respiration as a target effect. The hazard rating of the metals in the tolerance test changed in the Rh EC50 range, where Rh showed the lowest toxicity. The observed tolerance might suggest a protective mechanism such as metallothionein induction at concentrations around the EC50 values. The performance of the bioassay was satisfactory, in terms of the limit of detection, repeatability, reproducibility, roboustness, sensibility, and stability; the method’s critical uncertainty sources were identified for improvements. Figure Respirometric curved  相似文献   

9.
We review the syntheses, optical properties, and biological applications of cadmium selenide (CdSe) and cadmium selenide–zinc sulfide (CdSe–ZnS) quantum dots (QDs) and gold (Au) and silver (Ag) nanoparticles (NPs). Specifically, we selected the syntheses of QDs and Au and Ag NPs in aqueous and organic phases, size- and shape-dependent photoluminescence (PL) of QDs and plasmon of metal NPs, and their bioimaging applications. The PL properties of QDs are discussed with reference to their band gap structure and various electronic transitions, relations of PL and photoactivated PL with surface defects, and blinking of single QDs. Optical properties of Ag and Au NPs are discussed with reference to their size- and shape-dependent surface plasmon bands, electron dynamics and relaxation, and surface-enhanced Raman scattering (SERS). The bioimaging applications are discussed with reference to in vitro and in vivo imaging of live cells, and in vivo imaging of cancers, tumor vasculature, and lymph nodes. Other aspects of the review are in vivo deep tissue imaging, multiphoton excitation, NIR fluorescence and SERS imaging, and toxic effects of NPs and their clearance from the body. Figure Semiconductor quantum dots and metal nanoparticles have extensive applications, e.g., in vitro and in vivo bioimaging Tamitake Itoh and Abdulaziz Anas contributed equally to this article.  相似文献   

10.
An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid–base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. Figure We have systematically investigated the analytical potential of Raman spectroscopy of samples in acoustically levitated drops.  相似文献   

11.
Surface-enhanced Raman scattering (SERS) was discovered three decades ago and has gone through a tortuous pathway to develop into a powerful diagnostic technique. Recently, the lack of substrate, surface and molecular generalities of SERS has been circumvented to a large extent by devising and utilizing various nanostructures by many groups including ours. This article aims to present our recent approaches of utilizing the borrowing SERS activity strategy mainly through constructing two types of nanostructures. The first nanostructure is chemically synthesized Au nanoparticles coated with ultra-thin shells (ca. one to ten atomic layers) of various transition metals, e.g., Pt, Pd, Ni and Co, respectively. Boosted by the long-range effect of the enhanced electromagnetic (EM) field generated by the highly SERS-active Au core, the originally low surface enhancement of the transition metal can be substantially improved giving total enhancement factors up to 10(4)-10(5). It allows us to obtain the Raman spectra of surface water, having small Raman cross-section, on several transition metals for the first time. To expand the surface generality of SERS, tip-enhanced Raman spectroscopy (TERS) has been employed. With TERS, a nanogap can be formed controllably between an atomically flat metal surface and the tip with an optimized shape, within which the enhanced EM field from the tip can be coupled (borrowed) effectively. Therefore, one can obtain surface Raman signals (TERS signals) from adsorbed species at Au(110), Au(111) and, more importantly, Pt(l10) surfaces. The enhancement factor achieved on these single crystal surfaces can be up to 106, especially with a very high spatial resolution down to about 14 nm. To fully accomplish the borrowing strategy from different nanostructures and to explain the experimental observations, a three-dimensional finite-difference time-domain method was used to calculate and evaluate the local EM field on the core-shell nanoparticle surfaces and the TERS tips. Finally, prospects and further developments of this valuable strategy are briefly discussed with emphasis on the emerging experimental methodologies.  相似文献   

12.
In the past 20 years the characterization of electroactive surfaces and electrode reactions by scanning probe techniques has advanced significantly, benefiting from instrumental and methodological developments in the field. Electrochemical and electrical analysis instruments are attractive tools for identifying regions of different electrochemical properties and chemical reactivity and contribute to the advancement of molecular electronics. Besides their function as a surface analytical device, they have proved to be unique tools for local synthesis of polymers, metal depots, clusters, etc. This review will focus primarily on progress made by use of scanning electrochemical microscopy (SECM), conductive AFM (C-AFM), electrochemical scanning tunneling microscopy (EC-STM), and surface potential measurements, for example Kelvin probe force microscopy (KFM), for multidimensional imaging of potential-dependent processes on metals and electrified surfaces modified with polymers and self assembled monolayers. Figure Electrochemical and electrical tools like scanning electrochemical microscopy, conductive atomic force microscopy, electrochemical scannig tunneling microscopy and Kelvin probe force microscopy (see figure) are powerful tools for the multidimensional imaging of potential-dependent processes on metals and electrified surfaces modified with polymers and self assembled monolayers.  相似文献   

13.
A solid-state electrochemical application of the H-point standard addition method to the quantification of two depositable metals A and B, which produce strongly overlapped stripping peaks, is described. The method is based on the mechanical transference of mixtures of the solid sample plus a selected compound, of a reference depositable metal R, and of known amounts of a reference material containing A or B, to paraffin-impregnated graphite electrodes. After a reductive deposition step, voltammograms recorded for those modified electrodes immersed into a suitable electrolyte produce stripping peaks for the oxidation of all of the metals deposited. Measurement of the currents at selected potentials in overlapping peaks corresponding to the stripping of A and B permits the quantitation of these metals in the solid sample, while avoiding matrix effects. The method was applied to the simultaneous determination of Pb and Sn in archaeological glazes using PbCO3 and SnO2 as standards and ZnO as a reference material.   相似文献   

14.
The influence of dielectric substrates on the Raman scattering activities of Ag overlayers has been investigated. Materials with low refractive indices, such as SiO2, SiOx and AlF3, were found to provide suitable supporting platforms for Ag films to give strong surface-enhanced Raman scattering for dye molecules when illuminated at 488 nm. This finding was then extended to tip-enhanced Raman scattering (TERS). Huge enhancements of 70–80×, corresponding to net enhancements of >104, were observed for brilliant cresyl blue test analyte when Ag-coated tips made from or precoated with low refractive index materials were applied. The yield of fabricated tips that significantly enhance the Raman signals was found to be close to 100%. These findings provide crucial steps towards the use of TERS as a robust technique for rapid chemical imaging with nanometer spatial resolution. Figure Silver-coated dielectric tips for tip-enhanced Raman scattering (TERS) are capable of more than 10,000-fold enhancement  相似文献   

15.
This paper reports on an integrated analytical approach for the noninvasive characterization of Chinese nephrite samples, encompassing both geological reference specimens and museum objects. Natural variations induced by cationic substitutions, as well as human-induced alterations such as heating, which both affect color, are the focus of this contribution. Totally noninvasive methods of analysis were used, including X-ray fluorescence spectroscopy, Raman microspectroscopy, visible reflectance spectroscopy and X-ray diffraction; moreover, the feasibility of using a portable Raman spectrometer for the in-field identification of jades has been demonstrated. Fe/Fe+Mg (% p.f.u.) ratios of the jades have been calculated based on hydroxyl stretching Raman bands, which will provide an important addition to similar data that are being collected at major museums in the Western and Eastern hemispheres.   相似文献   

16.
谢泳  李筱琴  任斌  田中群 《电化学》2001,7(1):66-70
利用沉积在粗糙金电极上的过渡金属超薄层电极技术 ,我们获得了氢及一氧化碳在Rh和Pt表面上吸附的拉曼信号 ,并对两者之间的相互作用进行了分析 ..我们还进行了二氧化碳在这两种金属表面的还原行为的初步研究 ,以及对不同方式获得的一氧化碳吸附拉曼信号的特点进行了分析 .  相似文献   

17.

The Surface-enhanced Raman spectroscopy (SERS) method based on gold nanoparticles as SERS substrate was investigated for the label-free detection and quantification of probiotic bacteria that are widely used in various pharmaceutical formulations. Indeed, the development of a simple and fast SERS method dedicated to the quantification of bacteria should be very useful for the characterization of such formulations in a more convenient way than the usually performed tedious and time-consuming conventional counting method. For this purpose, uncoated near-spherical gold nanoparticles were developed at room temperature by acidic treatment of star-like gold nanoparticle precursors. In this study, we first investigated the influence of acidic treatment conditions on both the nanoparticle physicochemical properties and SERS efficiency using Rhodamine 6G (R6G) as “model” analyte. Results highlighted that an effective R6G Raman signal enhancement was obtained by promoting chemical effect through R6G-anion interactions and by obtaining a suitable aggregation state of the nanoparticles. Depending on the nanoparticle synthesis conditions, R6G SERS signals were up to 102–103-fold greater than those obtained with star-like gold nanoparticles. The synthesized spherical gold nanoparticles were then successfully applied for the detection and quantification of Lactobacillus rhamnosus GG (LGG). In that case, the signal enhancement was especially due to the combination of anion-induced chemical enhancement and nanoparticle aggregation on LGG cell wall consecutive to non-specific interactions. Both the simplicity and speed of the procedure, achieved under 30 min, including nanoparticle synthesis, sample preparation, and acquisition of SERS spectra, appeared as very relevant for the characterization of pharmaceutical formulations incorporating probiotics.

Graphical abstract

  相似文献   

18.
The integration of a range of technologies including microfluidics, surface-enhanced Raman scattering and confocal microspectroscopy has been successfully used to characterize in situ single living CHO (Chinese hamster ovary) cells with a high degree of spatial (in three dimensions) and temporal (1 s per spectrum) resolution. Following the introduction of a continuous flow of ionomycin, the real time spectral response from the cell was monitored during the agonist-evoked Ca2+ flux process. The methodology described has the potential to be used for the study of the cellular dynamics of a range of signalling processes. Figure Spectral mapping of a single CHO cell  相似文献   

19.
Endospores and endospore-forming bacteria were studied by Raman spectroscopy. Raman spectra were recorded from Bacillus licheniformis LMG 7634 at different steps during growth and spore formation, and from spore suspensions obtained from diverse Bacillus and Paenibacillus strains cultured in different conditions (growth media, temperature, peroxide treatment). Raman bands of calcium dipicolinate and amino acids such as phenylalanine and tyrosine are more intense in the spectra of sporulating bacteria compared with those of bacteria from earlier phases of growth. Raman spectroscopy can thus be used to detect sporulation of cells by a characteristic band at 1,018 cm–1 from calcium dipicolinate. The increase in amino acids could possibly be explained by the formation of small acid-soluble proteins that saturate the endospore DNA. Large variations in Raman spectra of endospore suspensions of different strains or different culturing conditions were observed. Next to calcium dipicolinate, tyrosine and phenylalanine, band differences at 527 and 638 cm–1 were observed in the spectra of some of the B. sporothermodurans spore suspensions. These bands were assigned to the incorporation of cysteine residues in spore coat proteins. In conclusion, Raman spectroscopy is a fast technique to provide useful information about several spore components. Figure A difference spectrum between Raman spectra of B. licheniformis LMG 7634 cultured for 6 days and 1 day, together with the reference Raman spectrum of calcium dipicolinate  相似文献   

20.
The use of vetiver for remediation of heavy metal soil contamination   总被引:4,自引:0,他引:4  
The use of Vetiveria zizanioides (vetiver) was studied to evaluate its efficiency for the remediation of soils contaminated by heavy metals. Vetiver plants were tested for Cr, Cu, Pb and Zn. Phytoextraction and bioremediation experiments were carried out by irrigating the vetiver plants and the dry plants with solutions containing suitable amounts of Cr, Cu, Pd and Zn. The concentrations of the heavy metals were determined in both experiments in shoot and root parts of vetiver plants using inductively coupled plasma atomic emission spectroscopy after a mineralization step. Phytoextraction experiments showed a poor efficiency of vetiver for Cr and Cu uptake (both less than 0.1% in shoots and roots after 30 days), but a quite high capability of Pb and Zn uptake (0.4% in shoots and 1% in roots for Pb and 1% both in shoots and in roots for Zn, after 30 days). For these reasons the vetiver plant can be considered a quite good “hyperaccumulator” only for Pb and Zn. As for bioremediation experiments, the vetiver plant showed heavy metal uptake values significantly lower than those obtained with other biological substrates. Figure Vetiver plant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号