首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the osmabenzyne Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)Cl(2)(PPh(3))(2) (1) with 2,2'-bipyridine (bipy) and thallium triflate (TlOTf) produces the thermally stable dicationic osmabenzyne [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) (2). The dicationic osmabenzyne 2 reacts with ROH (R = H, Me) to give osmabenzene complexes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf, in which the metallabenzene ring deviates significantly from planarity. In contrast, reaction of the dicationic complex 2 with NaBH(4) produces a cyclopentadienyl complex, presumably through the osmabenzene intermediate [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf. The higher thermal stability of [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf relative to [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf can be related to the stabilization effect of the OR groups on the metallacycle. A theoretical study shows that conversion of the dicationic osmabenzyne complex [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) to a carbene complex by reductive elimination is thermodynamically unfavorable. The theoretical study also suggests that the nonplanarity of the osmabenzenes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf is mainly due to electronic reasons.  相似文献   

2.
The crystalline dimeric 1-azaallyllithium complex [Li{mu,eta(3-N(SiMe3)C(Ad)C(H)SiMe3}]2 (1) was prepared from equivalent portions of Li[CH(SiMe3)2] and 1-cyanoadamantane (AdCN). Complex was used as precursor to each of the crystalline complexes 2-8 which were obtained in good yield. By 1-azaallyl ligand transfer, 1 afforded (i) [Al{eta3-N(SiMe3)C(Ad)C(H)SiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (5) with [AlCl2Me](2), (ii) [Sn{eta3-N(SiMe3)C(Ad)C(H)SiMe3}2] (7) with Sn[N(SiMe3)2]2, and (iii) [Li(N{C(Ad)=C(H)SiMe3-E}{Si(NN)SiMe3})(thf)2] (8) with the silylene Si[(NCH(2)Bu(t))2C6H(4)-1,2] [= Si(NN)]. By insertion into the C[triple bond, length as m-dash]N bond of the appropriate cyanoarene RCN, gave the beta-diketiminate [Li{mu-N(SiMe3)C(Ad)C(H)C(R)NSiMe3}]2 [R = Ph (2), C(6)H(4)Me-4 (3)], and yielded [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}{kappa1-N(SiMe3)C(Ad)=C(H)SiMe3-E}Me] (6). The beta-diketiminate [Al{kappa2-N(SiMe3)C(Ad)C(H)C(Ph)NSiMe3}Me2] (4) was prepared from 2 and [AlClMe2]2. The X-ray structures of 1 and 3-8 are presented. Multinuclear NMR spectra in C6D6 or C6D5CD3 have been recorded for each of 1-8; such data on 8 revealed that in solution two minor isomers were also present.  相似文献   

3.
The oxygen-bridged, silicon-substituted alkane {(Me3Si)2CH(SiMe2)}2O (1) may be prepared by the reaction of {(Me3Si)2CH}Li with ClSiMe2OSiMe2Cl in refluxing THF. Similarly, the alkane {(Me3Si)(Me2MeOSi)CH(SiMe2CH2)}2 (2) is readily accessible from the reaction between {(Me3Si)(Me2MeOSi)CH}Li and ClSiMe2CH2CH2SiMe2Cl under the same conditions. Compound 1 reacts with two equivalents of MeK to give the polymeric complex [[{(Me3Si)2C(SiMe2)}2O]K2(OEt2)]infinity [5(OEt2)] after recrystallisation. Treatment of 2 with two equivalents of either MeLi or MeK gives the corresponding complexes [{(Me3Si)(Me2MeOSi)C(SiMe2CH2)}2Li][Li(DME)3] [7(DME)3] and [{(Me3Si)(Me2MeOSi)C(SiMe2CH2)}2K2]n (8), respectively, after recrystallisation. Treatment of the alkane (Me3Si)2(Me2MeOSi)CH with one equivalent of MeK gives the polymeric complex [{(Me3Si)2(Me2MeOSi)C}K]infinity (3). These compounds have been identified by 1H and 13C{1H} NMR spectroscopy and elemental analyses and compounds 5(OEt2), 7(DME)3 and 3 have been further characterised by X-ray crystallography. Compound 7(DME)3 crystallises as a solvent-separated ion pair, whereas 5(OEt2) and 3 adopt polymeric structures in the solid state.  相似文献   

4.
Reaction of [M(CH2SiMe3)3(THF)2] (M = Sc or Y) with the neutral fac-kappa3 N3 donor ligands (L) Me3[9]aneN3 or HC(Me2pz)3 gave the corresponding trialkyls [M(L)(CH2SiMe3)3]; activation of the scandium congeners with B(C6F5)3 in the presence of ethylene afforded highly active polymerisation catalysts (Me3[9]aneN3 = 1,4,7-trimethyltriazacyclononane).  相似文献   

5.
Reaction of [U{(SiMe2NPh)3-tacn}Cl] with LiNEt2 or LiNPh2 affords the corresponding amide compounds, [U{(SiMe2NPh)3-tacn}(NR2)] (R = Et (1), R = Ph (2)). The complexes have been fully characterized by spectroscopic methods and the solid-state structure of 1 was determined by single-crystal X-ray diffraction analysis. The six nitrogen atoms of the tris(dimethylsilylanilide)triazacyclononane ligand are in a trigonal prismatic configuration with the nitrogen atom of the diethylamide ligand capping one of the trigonal faces of the trigonal prism. Crystallization of 2 from CH3CN solution gave crystals of the six-membered heterocycle [U{(SiMe2NPh)3-tacn}{kappa2-(HNC(Me))2CC[triple bond]N}] (3). The reactivity of the amides was investigated. Both compounds undergo acid-base reactions with protic substrates such as HOC6H2-2,4,6-Me3, 3,5-Me2pzH (pz = pyrazolyl) and HSC5H4N to give the corresponding [U{(SiMe2NPh)3-tacn}X] (X = OC6H2-2,4,6-Me3 (4), 3,5-Me2pzH (5), kappa2-SC5H4N (6)) complexes. The solid-state structures of and were determined by single-crystal X-ray diffraction and revealed that the compounds are eight-coordinate with dodecahedral geometry.  相似文献   

6.
1,2-双(四甲基环戊二烯基)四甲基二硅烷与正丁基锂作用生成(四甲基二硅撑)双(四甲基环戊二烯基负离子盐),后者随即与六碳基钼反应形成1,1'-(四甲基二硅撑)双(四甲基环戊二烯基铝负离子盐)-(Me2SiSiMe2)[Me4CpMo(CO)3-Li+]2(I),I与冰醋酸作用,随即分别与CCl4,NBS及I2反应,生成相应的铝卤化合物(Me2SiSiMe2)[Me4CpMo(CO)3X]2[X=Cl(1),Br(2),I(3)].I与CH3I反应,在钼原子上发生烃基化,得到产物(Me2SiSiMe2)[Me4CpMo(CO)3Me]2(4);I与单质I2直接反应,生成脱硅桥产物Me4Cp(CO)>3I(5).经元素分析、IR及1HNMR表征了化合物1-5的结构。  相似文献   

7.
The reaction of [(C5Me5)2Ln][(mu-Ph)2BPh2] complexes with the lithium salt of (trimethylsilyl)diazomethane, Li[Me3SiCN2], gave products formulated as the dimeric isocyanotrimethylsilyl amide complexes {(C5Me5)2Ln[mu-N(SiMe3)NC]}2 (Ln = Sm, 1; La, 2). Reactions of (C5Me5)2Sm and [(C5Me5)2Sm(mu-H)]2 with Me3SiCHN2 also form 1. Complexes 1 and 2 react with Me3CCN to form the 1,2,3-triazolato complexes (C5Me5)2Ln(NCCMe3)[NNC(SiMe3)C(CMe3)N] (Ln = Sm, 3; La, 4). Complex 2 reacts with Me3SiN3 to make the isocyanide ligated azide complex {(C5Me5)2La[CNN(SiMe3)2](mu-N3)}3, 5.  相似文献   

8.
Cyclic polyamine 1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane, (Me(3)TACD)H (= Me(3)[12]aneN(4)), reacted with [K{N(SiHMe(2))(2)}] in benzene-d(6) to give [K{(Me(3)TACD)SiMe(2)N(SiHMe(2))}] (1) under hydrogen evolution. Single-crystal X-ray diffraction of 1 shows a dinuclear structure in the solid state, featuring a bridging μ-amido and a weak β-agostic Si-H bond. 1,7-Dimethyl-1,4,7,10-tetraazacyclododecane (Me(2)TACD)H(2) (= Me(2)[12]aneN(4)) and (Me(3)TACD)H were reacted with [Sc{N(SiHMe(2))(2)}(3)(thf)] in benzene-d(6) to give [{(Me(2)TACD)SiMe(2)N(SiHMe(2))}Sc{N(SiHMe(2))(2)}] (2) and [(Me(3)TACD)Sc{N(SiHMe(2))(2)}(2)SiMe(2)] (3), respectively. Both compounds are monomeric in solution and X-ray diffraction studies showed the scandium metal centers to be six-coordinate. The scandium alkyl complex [Sc(Me(3)TACD)(CH(2)SiMe(3))(2)] (4) was obtained by reacting (Me(3)TACD)H with [Sc(CH(2)SiMe(3))(3)(thf)] in benzene-d(6). The scandium amide complexes 2 and 3 catalyzed the ring-opening polymerization (ROP) of meso-lactide to give syndiotactic polylactides.  相似文献   

9.
The isospecific 3,4-polymerization of isoprene has been achieved for the first time by use of a combination of a binuclear rare earth metal dialkyl complex, such as [Me2Si(C5Me4)(mu-PCy)YCH2SiMe3]2 (Cy = cyclohexyl), and an equimolar amount of [Ph3C][B(C6F5)4] as a catalyst system. A DFT calculation suggested that a binuclear monocationic monoalkyl species, such as [Me2Si(C5Me4)(mu-PCy)Y(mu-CH2SiMe3)Y(mu-PCy)(C5Me4)SiMe2]+, in which the alkyl group bridges the two metal centers, could be the true catalyst species.  相似文献   

10.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

11.
Cai H  Yu X  Chen S  Qiu H  Guzei IA  Xue ZL 《Inorganic chemistry》2007,46(19):8071-8078
M(NMe2)4 (M = Zr, 1a; Hf, 1b) and the silyl anion (SiButPh2)- (2) in Li(THF)2SiButPh2 (2-Li) were found to undergo a ligand exchange to give [M(NMe2)3(SiButPh2)2]- (M = Zr, 3a; Hf, 3b) and [M(NMe2)5]- (M = Zr, 4a; Hf, 4b) in THF. The reaction is reversible, leading to equilibria: 2 1a (or 1b) + 2 2 <--> 3a (or 3b) + 4a (or 4b). In toluene, the reaction of 1a with 2 yields [(Me2N)3Zr(SiButPh2)2]-[Zr(NMe2)5Li2(THF)4]+ (5) as an ionic pair. The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in (Me2N)3Zr-N(SiMe3)2 (6a) to give 3a and [N(SiMe3)2]- (7) in reversible reaction: 6a + 2 2 <--> 3a + 7. The following equilibria have also been observed and studied: 2M(NMe2)4 (1a; 1b) + [Si(SiMe3)3]- (8) <--> (Me2N)3M-Si(SiMe3)3 (M = Zr, 9a; Hf, 9b) + [M(NMe2)5]- (M = Zr, 4a; Hf, 4b); 6a (or 6b) + 8 <--> 9a (or 9b) + [N(SiMe3)2]- (7). The current study represents rare, direct observations of reversible amide-silyl exchanges and their equilibria. Crystal structures of 5, (Me2N)3Hf-Si(SiMe3)3 (9b), and [Hf(NMe2)4]2 (dimer of 1b), as well as the preparation of (Me2N)3M-N(SiMe3)2 (6a; 6b) are also reported.  相似文献   

12.
The coordination chemistry of the bis(dimethylphenylsilyl)amide ligand, [N(SiMe2Ph)2]1-, with sodium, potassium, and lanthanum has been investigated for comparison with the more commonly used [N(SiMe3)2]1- and [N(SiHMe2)2]1- ligands. HN(SiMe2Ph)2 reacts with KH to produce KN(SiMe2Ph)2, 1, which crystallizes from toluene as the dimer [KN(SiMe2Ph)2(C7H8)]2, 2. The structure of 2 shows that the [N(SiMe2Ph)2]1- ligand can function as a polyhapto ligand with coordination from each phenyl group as well as the normal nitrogen ligation and agostic methyl interactions common in methylsilylamides. Each potassium in 2 is ligated by an eta4-toluene, two bridging nitrogen atoms, and an eta2-phenyl, an eta1-phenyl, and an eta1-methyl group. KN(SiMe2Ph)2 crystallizes from toluene in the presence of 18-crown-6 to make the monometallic complex (18-crown-6)KN(SiMe2Ph)2, 3, in which [N(SiMe2Ph)2]1- functions as a simple monodentate ligand through nitrogen. The reaction of HN(SiMe2Ph)2 with NaH in THF at reflux for 2 days generates Na[N(SiMe2Ph)2], 4, which crystallizes as the solvated dimer {(THF)Na[mu-eta1:eta1-N(SiMe2Ph)2]}2, 5. A lanthanide metallocene derivative of [N(SiMe2Ph)2]1- was obtained by reaction of K[N(SiMe2Ph)2] with [(C5Me5)2La][(mu-Ph)2BPh2]. Crystals of (C5Me5)2La[N(SiMe2Ph)2], 6, show agostic interactions between lanthanum and methyl groups of each silyl substituent. The [N(SiMe3)2]1- analogue of 3, (18-crown-6)KN(SiMe3)2, 7, was also structurally characterized for comparison.  相似文献   

13.
Mixed amidinato amido complexes [Me3SiNC(tBu)NSiMe3]M[N(SiMe3)2] (M = Sn 2, Ge 3) were prepared by the reaction of [Me3SiNC(tBu)NSiMe3]Li (1a) with SnCl2 and GeCl2(dioxane) in ether. The N(SiMe3)2 ligand in these compounds is derived from the rearrangement of the [Me3SiNC(tBu)NSiMe3]- anion with extrusion of tBuCN. The susceptibility of [Me3SiNC(tBu)NSiMe3]- to rearrangement appears to be dependent on reaction solvent and on the coordinated metal center. Single-crystal X-ray diffraction studies of 2 and 3 are presented. Replacement of Me for tBu in the ligand allowed [Me3SiNC(Me)NSiMe3]2SnII (4) to be isolated, and an X-ray structure of this compound is reported. The isolation of 4 indicates that steric factors also play a role in the stability of [Me3SiNC(tBu)NSiMe3]-. Compounds 2 and 3 are outstanding catalysts for the cyclotrimerization of phenyl isocyanates to perhydro-1,3,5-triazine-2,4,6-triones (isocyanurates) at room temperature. In contrast, complex 4 catalytically reacts with phenyl isocyanate to produce isocyanate dimer and trimer in a 52:35 ratio.  相似文献   

14.
Niemeyer M 《Inorganic chemistry》2006,45(22):9085-9095
The scope of hypersilyl potassium, KHyp [Hyp = Si(SiMe3)3], as a silylation or deprotonation agent for some rare-earth bis(trimethylsilyl)amides has been explored. Thus, the reaction with Yb{N(SiMe3)2}2 affords the addition product [K][YbHyp{N(SiMe3)2}2] (2) in high yield, which contains a three-coordinate ytterbium atom, therefore representing the first example of a lanthanide silyl with a coordination number lower than 6. In contrast, deprotonation on the periphery is observed with the tris(amides) Ln{N(SiMe3)2}3 (Ln = Y, Yb) and compounds of the type [K][CH2Si(Me)2N(SiMe3)Ln{N(SiMe3)2}2] (Ln = Y (3), Yb (4)) are isolated. Crystallization of 3 from a mixture of benzene and heptane afforded the bis(benzene) solvate [(C6H6)2K][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (3a). The reaction between the strong bases nBuLi/tetramethylenediamine (TMEDA) or tBuLi with Y{N(SiMe3)2}3 or Yb{N(SiMe3)2}3 yielded the deprotonation product [(tmeda)Li][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (6) and the reduction product [LiYb{N(SiMe3)2}3] (7), respectively. Instead of the expected bimetallic product, the reaction between YbI(2) and 2 equiv of 3 gave the neutral complex [Y{CH2Si(Me)2N(SiMe3)}{N(SiMe3)2}(thf)] (8) in good yield. The compounds have been characterized by melting point, elemental analysis, IR spectroscopy, and X-ray crystallography and for selected species by 1H, 13C, 29Si, and 171Yb NMR spectroscopy. For 3a and 4, the nature of the bonding between the carbanionic centers and the lanthanide and potassium cations was studied by density functional theory calculations.  相似文献   

15.
The loosely ligated [BPh4]1- ion in [(C5Me5)2Ln][(mu-Ph)2BPh2] can be readily displaced by alkyllithium or potassium reagents to provide access to unsolvated alkyl lanthanide metallocenes, [(C5Me5)2LnR]x, which display high C-H activation reactivity. [(C5Me5)2SmMe]3, [(C5Me5)2LuMe]2, [(C5Me5)2LaMe]x, (C5Me5)2Sm(CH2Ph), [(C5Me5)2Sm(CH2SiMe3)]x, and [(C5Me5)2SmPh]2 were prepared in this way. [(C5Me5)2SmMe]3 metalates toluene, benzene, SiMe4, and (C5Me5)1- ligands to make (C5Me5)2Sm(CH2Ph), [(C5Me5)2SmPh]2, [(C5Me5)2Sm(CH2SiMe3)]x, and (C5Me5)6Sm4[C5Me3(CH2)2]2, respectively. These C-H activation reactions can be done using an in situ synthesis of [(C5Me5)2LnMe]x such that the [(C5Me5)2Ln][(mu-Ph)2BPh2]/LiMe/RH combination provides a facile route to a variety of unsolvated [(C5Me5)2LnR]x products.  相似文献   

16.
The yttrium, cerium and magnesium bis(trimethylsilyl)methyls [Ln[CH(SiMe3)2]3][Ln = Y (1), Ce (2)], and the known compound Mg[[CH(SiMe3)2]2 (C) and [Mg(mu-Br)[CH(SiMe3)2](OEt2)]2 (D) formed the crystalline nitrile adducts [1(NCBut)2] (5), [2(NCPh)] (6), [C(NCR)2][R = But (8), Ph (9), C6H3Me2-2,6 (10)] and [Mg(mu-Br)[CH(SiMe3)2](NCR)]2 [R = But (11), Ph (12), C6H3Me2-2,6 (13)], rather than beta-diketiminato-metal insertion products. The beta-diketiminato-cerium complex [Ce[(N(SiMe3)C(C6H4But-4))2CH][N(SiMe3)2]2] (16) was obtained from [Ce[N(SiMe3)2]3] and the beta-diketimine H[[N(SiMe3)C(C6H4But-4)]2CH]]. The cerium alkyl 2 and [Ln[CH(SiMe3)(SiMe2OMe)]3][Ln = Y (3), Ce (4)] were obtained from the appropriate lithium alkyl precursor and [Ce(OC6H2But2-2,6-Me-4)3] or LnCl3, respectively. Heating complex 3 with benzonitrile in toluene afforded 2,2-dimethyl-4,6-diphenyl-5-trimethylsilyl-1,3-diaza-2-silahexa-1,3-diene (7), a member of a new class of heterocycles. The X-ray structures of the crystalline compounds, D, [Mg[CH(SiMe3)2]2(OEt2)2], the known [Ce(Cl)[(N(SiMe3)C(Ph))2CH]2] (E) and 16 are reported. The cerium alkyl (like 1) has one close Ce...C contact for each ligand, attributed to a gamma-C-Ce agostic interaction. The Ln alkyls and have a trigonal prismatic arrangement of the chelating ligands (each of the same chirality at Calpha) around the metal. In an arene solution at 313 K exists as two isomers, as evident from detailed NMR spectroscopic experiments.  相似文献   

17.
Reaction of the known germylene Ge[N(SiMe3)2]2 and a new heterocyclic variant Ge[(NMes)2(CH)2] with [L(Me2)Cu]2 (L(Me2) = the beta-diketiminate derived from 2-(2,6-dimethylphenyl)amino-4-(2,6-dimethylphenyl)imino-2-pentene) yielded novel Cu(I)-Ge(II) complexes L(Me2)Cu-Ge[(NMes)2(CH)2] (1a) and L(Me2)Cu-Ge[N(SiMe3)2]2 (1b), which were characterized by spectroscopy and X-ray crystallography. The lability of the Cu(I)-Ge(II) bond in 1a and b was probed by studies of their reactivity with benzil, PPh3, and a N-heterocyclic carbene (NHC). Notably, both complexes are cleaved rapidly by PPh3 and the NHC to yield stable Cu(I) adducts (characterized by X-ray diffraction) and the free germylene. In addition, the complexes are highly reactive with O2 and exhibit chemistry which depends on the bound germylene. Thus, oxygenation of 1a results in scission and formation of thermally unstable L(Me2)CuO2, which subsequently decays to [(L(Me2)Cu)2(mu-O)2], while 1b yields L(Me2)Cu(mu-O)2Ge[N(SiMe3)2]2, a novel heterobimetallic intermediate having a [Cu(III)(mu-O)2Ge(IV)]3+ core. The isolation of the latter species by direct oxygenation of a Cu(I)-Ge(II) precursor represents a new route to heterobimetallic oxidants comprising copper.  相似文献   

18.
Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))]][BPh4].  相似文献   

19.
We report a facile route to the molecular compounds with the Mg-O-Al structural motif. The reaction of Mg[N(SiMe3)2]2 (1) with a stoichiometric amount of LAlOH(Me) (2) [L = CH{(CMe)(2,6-iPr2C6H3N)}2] in THF/n-hexane at 0 degrees C results in the formation of the heterobimetallic compound (Me3Si)2NMg(THF)2-O-Al(Me)L (3) in high yield. The similar reaction of 1 equiv of Mg[N(SiMe3)2]2 and 2 equiv of LAlOH(Me) results in the formation of trimetallic compound L(Me)Al-O-Mg(THF)2-O-Al(Me)L (4). Structural analyses of 3 and 4 have been carried out, revealing the presence of the Mg-O-Al motif. A tentative assignment of the Mg-O-Al vibrations has been made and was supported by calculations.  相似文献   

20.
The tetrachloride salt of uranium reacts with 1 equiv of the lithium ligand Li2[(C5Me4)2SiMe2] in DME to form the complex [eta5-(C5Me4)2SiMe2]UCl2.2LiCl.2DME (1), which undergoes a rapid hydrolysis in toluene to yield the dimeric bridged monochloride, monooxide complex [{[eta5-(C5Me4)2SiMe2]UCl}2(mu-O)(mu-Cl)*Li*1/2DME]2 (2). Metathesis of 2 with BuLi in DME gives the mono-bridged dibutyl complex {[eta5-(C5Me4)2SiMe2]UBu}2(mu-O) (3). Complex 2 was characterized by solid-state X-ray analysis. Complex 3 was found to be an active catalyst for the disproportionation metathesis of TMSCCH (TMS = SiMe3) and the cross-metathesis of TMSCCH or TMSCCTMS with various terminal alkynes. The metathesis of TMSCCH gives TMSCCTMS and HCCH, whereas the cross-metathesis of TMSCCH or TMSCCTMS with terminal alkynes (RCCH) yields TMSCCTMS, TMSCCR, and HCCH. In addition, TMSCCCH3 also was found to react with tBuCCH, yielding TMSCCBut and CH3CCH. A plausible mechanism for the catalytic process is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号