首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structures of two ferromagnetic polynuclear copper(II) complexes, derived from end-to-end azido ligand and tridentate (NNN donor) Schiff base ligand, have been studied using the full-potential linearized augmented plane-wave method based on the density-functional theory. They are [Cu(L1)(micro-1,3-N3)]n(ClO4)n (1) and [Cu(L2)(micro-1,3-N3)]n(ClO4)n (2). The result shows that the spin populations in these two complexes are mainly distributed on the equatorial planes of a square pyramidal that surround the copper(II) ions. There are large and positive spin populations on copper(II) ions, small and positive spin populations on the three nitrogen atoms of tridentate Schiff base ligand, and the two terminal nitrogen atoms of asymmetrical end-to-end azido ligand, while weak and negative spin populations on the central nitrogen atoms of asymmetrical end-to-end azido ligand. Ferromagnetic coupling through the asymmetrical azido ligand in these two complexes has been mainly attributed to the spin delocalization, also with weak spin-polarization effect.  相似文献   

2.
It is well-known that the azido bridge gives rise antiferromagnetic (AF) or ferromagnetic (F) coupling depending on its coordination mode, namely end-to-end or end-on, respectively. The aim of the present work is to analyse the factors contributing to this different magnetic behaviour. The difference dedicated configuration interaction (DDCI) method is applied to several binuclear Cu(II) azido-bridged models with both types of coordination. In end-on complexes, the direct exchange and the spin polarisation contributions are found to be responsible for the ferromagnetic coupling. In end-to-end complexes, both the direct exchange and the spin polarisation are small and the leading term is the antiferromagnetic dynamical polarisation contribution. The most relevant physical effects are included in the DDCI calculations so that good quantitative agreement is reached for the coupling constant as well as the spin densities.  相似文献   

3.
4.
In the recent years, a wide variety of transition metal complexes with the nitronyl radical ligands have been reported1,2. These systems display the various magnetic behaviors (ferro- or antiferro-magnetism) between the unpaired electrons on the radical ligands and on the paramagnetic metal ion center. However, few theoretical studies on the metal-radical complexes were reported and quite few are known about the nature of the exchange coupling interactions. In this work, we are interested i…  相似文献   

5.
Hard-ligand, high-potential copper sites have been characterized in double mutants of Pseudomonas aeruginosa azurin (C112D/M121X (X = L, F, I)). These sites feature a small A(zz)(Cu) splitting in the EPR spectrum together with enhanced electron transfer activity. Due to these unique properties, these constructs have been called "type zero" copper sites. In contrast, the single mutant, C112D, features a large A(zz)(Cu) value characteristic of the typical type 2 Cu(II). In general, A(zz)(Cu) comprises contributions from Fermi contact, spin dipolar, and orbital dipolar terms. In order to understand the origin of the low A(zz)(Cu) value of type zero Cu(II), we explored in detail its degree of covalency, as manifested by spin delocalization over its ligands, which affects A(zz)(Cu) through the Fermi contact and spin dipolar contributions. This was achieved by the application of several complementary EPR hyperfine spectroscopic techniques at X- and W-band (~9.5 and 95 GHz, respectively) frequencies to map the ligand hyperfine couplings. Our results show that spin delocalization over the ligands in type zero Cu(II) is different from that of type 2 Cu(II) in the single C112D mutant. The (14)N hyperfine couplings of the coordinated histidine nitrogens are smaller by about 25-40%, whereas that of the (13)C carboxylate of D112 is about 50% larger. From this comparison, we concluded that the spin delocalization of type zero copper over its ligands is not dramatically larger than in type 2 C112D. Therefore, the reduced A(zz)(Cu) value of type zero Cu(II) is largely attributable to an increased orbital dipolar contribution that is related to its larger g(zz) value, as a consequence of the distorted tetrahedral geometry. The increased spin delocalization over the D112 carboxylate in type zero mutants compared to type 2 C112D suggests that electron transfer paths involving this residue are enhanced.  相似文献   

6.
基于DFT-BS方法,在不同泛函方法和基组下计算[CuIIGdIII{pyCO(OEt)py C(OH)(OEt)py}3]2+及3d-Gd异金属配合物的磁耦合常数,结果表明,PBE0/TZVP(Gd为SARC-DKH-TZVP)水平可用于描述其磁学性质。顺磁中心CuII、GdIII与桥联配位氧原子间存在较强的轨道相互作用,其磁轨道主要由GdIII的4fz3、4fz(x2-y2)轨道、CuII的3dx2-y2轨道和桥联配位原子O的p轨道组成。顺磁中心CuII离子以自旋离域作用为主,GdIII离子以自旋极化作用为主,顺磁中心CuII自旋离域作用对桥联氧原子的影响大于顺磁中心GdIII的自旋极化作用。在同结构3d-Gd配合物中,随着MII离子未成对电子的增加,顺磁中心间自旋密度平方差越大,顺磁中心MII和GdIII之间的反铁磁性贡献越大,其磁耦合常数越小。  相似文献   

7.
The spectroscopic and magnetic properties of dioxolene complexes of zinc, copper and nickel were studied by DFT calculations on model complexes of formulas [(NH(3))(4)M(II)(SQ)](+) (M=Zn, Ni; SQ=semiquinonato) and [(NH(3))(2)Cu(II)(SQ)](+). Standard approaches such as time-dependent DFT (TDDFT), the Slater transition state (STS), and broken symmetry (BS) were found to be unable to completely account for the physical properties of the systems, and complete active space-configuration interaction (CAS-CI) calculations based on the Kohn-Sham (KS) orbitals was applied. The CAS-CI energies, properly corrected with multireference perturbation theory (MR-PT), were found to be in good agreement with experimental data. We present here a calculation protocol that has a low CPU cost/accuracy ratio and seems to be very promising for interpreting the properties of strongly correlated electronic systems in complexes of real chemical size.  相似文献   

8.
罗树常 《分子科学学报》2020,(1):62-68,I0005
基于DFT-BS方法,选择不同的泛函方法和基组,研究anti,anti甲酸桥联双核铜配合物的磁学性质.结果表明,在B3P86/TZV水平计算得到顺磁中心Cu(Ⅱ)离子间磁耦合常数为-55.63 cm^-1,与实验值-55.60 cm^-1最接近,可准确描述甲酸桥联双核铜配合物的磁学性质.顺磁中心Cu(Ⅱ)与甲酸根桥联配体间有较强的轨道作用,其磁轨道主要来源于Cu(Ⅱ)离子的3dyz轨道、桥联配体甲酸根离子的离域π键,顺磁中心Cu(Ⅱ)离子为自旋离域机理.在不同桥联模式的甲酸桥联双核铜配合物中,随顺磁中心Cu(1)自旋密度增加,Cu(Ⅱ)离子间的反铁磁性贡献逐渐增加,其磁耦合常数J值逐渐减小.  相似文献   

9.
The reaction of a tridentate Schiff base ligand HL (2-[(3-dimethylaminopropylimino)-methyl]-phenol) with Ni(II) acetate or perchlorate salts in the presence of azide as coligand has led to two new Ni(II) complexes of formulas [Ni(3)L(2)(OAc)(2)(μ(1,1)-N(3))(2)(H(2)O)(2)]·2H(2)O (1) and [Ni(2)L(2)(μ(1,1)-N(3))(μ(1,3)-N(3))](n)(2). Single crystal X-ray structures show that complex 1 is a linear trinuclear Ni(II) compound containing a μ(2)-phenoxido, an end-on (EO) azido and a syn-syn acetato bridge between the terminal and the central Ni(II) ions. Complex 2 can be viewed as a one-dimensional (1D) chain in which the triply bridged (di-μ(2)-phenoxido and EO azido) dimeric Ni(2) units are linked to each other in a zigzag pattern by a single end-to-end (EE) azido bridge. Variable-temperature magnetic susceptibility studies indicate the presence of moderate ferromagnetic exchange coupling in complex 1 with J value of 16.51(6) cm(-1). The magnetic behavior of 2 can be fitted in an alternating ferro- and antiferromagnetic model [J(FM) = +34.2(2.8) cm(-1) and J(AF) = -21.6(1.1) cm(-1)] corresponding to the triple bridged dinuclear core and EE azido bridge respectively. Density functional theory (DFT) calculations were performed to corroborate the magnetic results of 1 and 2. The contributions of the different bridges toward magnetic interactions in both compounds have also been calculated.  相似文献   

10.
Centrosymmetric [Cu(2)(μ-X)(μ-L(m)*)(2)](ClO(4))(3) (X = F(-), Cl(-), Br(-), OH(-), L(m)* = m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene)], the first example of a series of bimetallic copper(II) complexes linked by a linearly bridging mononuclear anion, have been prepared and structurally characterized. Very strong antiferromagnetic exchange coupling between the copper(II) ions increases along the series F(-) < Cl(-) < OH(-) < Br(-), where -J = 340, 720, 808, and 945 cm(-1). DFT calculations explain this trend by an increase in the energy along this series of the antibonding antisymmetric combination of the p orbital of the bridging anion interacting with the copper(II) d(z(2)) orbital.  相似文献   

11.
Understanding the bonding in transition metal complexes with redox-active ligands is a major challenge, for example in redox catalysis or in bioinorganic chemistry. In this work, electronic g-tensors, spin-density distributions, and electronic structure have been studied by different density functional methods for an extended series of complexes [Ru(acac)2(L)]n (n = -1, 0, +1; L = redox-active o-quinonoid ligand). Comparison is made with experimental g-tensors and g-tensor-based oxidation-state assignments for a number of experimentally studied examples, using both gradient-corrected (BP86) and hybrid functionals (B3LYP, BHLYP) representing a range of exact-exchange admixtures. Reasonable, albeit not perfect, agreement with experimental g-tensors is obtained in one-component DFT calculations with hybrid functionals. Analyses of spin densities confirm the assignment of the cationic complexes as predominantly d5-Ru(III) with a neutral quinonoid ligand. However, this conclusion is obtained only after inclusion of the appreciable spin polarization of the unrestricted determinant, while the singly occupied molecular orbital (SOMO) is localized more on the acac ligands. The anionic complexes turn out to be approximately halfway between a d6-Ru(II)/semiquinone and a d5-Ru(III)/catecholate formulation, but again only after taking into account the extensive spin polarization. Even the previous assignment of the neutral parent systems as d5-Ru(III)/semiquinone is not accurate, as a d6-Ru(II)/quinone resonance structure contributes to some extent. Very unusual trends in the spin contamination of the Kohn-Sham determinant with increasing exact-exchange admixture in some of the cationic complexes have been traced to an interplay between spin delocalization and spin polarization.  相似文献   

12.
High-resolution X-ray diffraction and polarized neutron diffraction experiments have been performed on the Y-semiquinonate complex, Y(HBPz3)2(DTBSQ), in order to determine the charge and spin densities in the paramagnetic ground state, S = (1/2). The aim of these combined studies is to bring new insights to the antiferromagnetic coupling mechanism between the semiquinonate radical and the rare earth ion in the isomorphous Gd(HBPz3)2(DTBSQ) complex. The experimental charge density at 106 K yields detailed information about the bonding between the Y3+ ion and the semiquinonate ligand; the topological charge of the yttrium atom indicates a transfer of about 1.5 electrons from the radical toward the Y3+ ion in the complex, in agreement with DFT calculations. The electron density deformation map reveals well-resolved oxygen lone pairs with one lobe polarized toward the yttrium atom. The determination of the induced spin density at 1.9 K under an applied magnetic field of 9.5 T permits the visualization of the delocalized magnetic orbital of the radical throughout the entire molecule. The spin is mainly distributed on the oxygen atoms [O1 (0.12(1) mu B), O2(0.11(1) mu B)] and the carbon atoms [C21 (0.24(1) mu B), C22(0.20(1) mu B), C24(0.16(1) mu B), C25(0.12(1) mu B)] of the carbonyl ring. A significant spin delocalization on the yttrium site of 0.08(2) mu B is observed, proving that a direct overlap with the radical magnetic orbital can occur at the rare earth site and lead to antiferromagnetic coupling. The DFT calculations are in good quantitative agreement with the experimental charge density results, but they underestimate the spin delocalization of the oxygen toward the yttrium and the carbon atoms of the carbonyl ring.  相似文献   

13.
14.
Complexes cis-MCl2(big), big=bis(1-methylimidazol-2-yl)glyoxal, M=Pt, Pd, were prepared and characterized through electrochemistry, spectroscopy, and for M=Pt, by X-ray structure analysis. The seven-membered chelate ring formed through N,N' coordination of the ligand big shows a boat conformation in agreement with density functional theory (DFT) calculation results. No significant intermolecular interactions were observed for the platinum compound. Both the PdII and PtII complexes undergo reversible one-electron reduction in CH2Cl2/ 0.1 M Bu4NPF6; the reduced palladium compound disintegrates above -30 degrees C. Electron paramagnetic resonance (EPR), UV-vis, and IR spectroelectrochemistry studies were employed to study the monoanions. The anion radical complex [cis-PtCl2(big)]*- exhibits a well-resolved EPR spectrum with small but well-detectable g anisotropy and an isotropic 195Pt hyperfine coupling of 12.2 G. DFT calculations confirm the spin concentration in the alpha-semidione part of the radical complex with small delocalization to the bis(imidazolyl)metal section. The results show that EPR and electroactive moieties can be linked to the cis-dichloroplatinum(II) group via imidazole coordination.  相似文献   

15.
Four new neutral copper azido polymers, [Cu(4)(N(3))(8)(L(1))(2)](n) (1), [Cu(4)(N(3))(8)(L(2))(2)](n) (2), [Cu(4)(N(3))(8)(L(3))(2)](n) (3), and [Cu(9)(N(3))(18)(L(4))(4)](n) (4) [L(1-4) are formed in situ by reacting pyridine-2-carboxaldehyde with 2-[2-(methylamino)ethyl]pyridine (mapy, L(1)), N,N-dimethylethylenediamine (N,N-dmen, L(2)), N,N-diethylethylenediamine (N,N-deen, L(3)), and N,N,2,2-tetramethylpropanediamine (N,N,2,2-tmpn, L(4))], have been synthesized by using 0.5 mol equiv of the chelating tridentate ligands with Cu(NO(3))(2)·3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu(II)(4) building blocks. The overall structure of 3 is two-dimensional, while the other three complexes are one-dimensional in nature. Complex 1 represents a unique example containing hemiaminal ether arrested by copper(II). Complexes 1 and 2 have a rare bridging azido pathway: both end-on and end-to-end bridging azides between a pair of Cu(II) centers. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all four complexes. Density functional theory calculations (B3LYP functional) have been performed on complexes 1-3 to provide a qualitative theoretical interpretation of their overall ferromagnetic behavior.  相似文献   

16.
The spin states of a Co(II) oxoverdazyl compound are investigated by means of wavefunction-based calculations. Within a ca. 233 K energy window, the ground state and excited states display a structure-sensitive admixture of low-spin SM=1/2 in a dominant high-spin SM=3/2 Co(II) ion as indicated by the localized molecular orbitals. The puzzling spin zoology that results from the coupling between open-shell radical ligands and a spin-crossover metal ion gives rise to this unusual scenario, which extends the views in molecular magnetism. In agreement with experimental observation, the low-energy spectroscopy is very sensitive to deformations of the coordination sphere, and a growing admixture of Co(II) low-spin is evidenced from the calculations. In analogy with mesomerism that accounts for charge delocalization, entanglement combines different local spin states to generate a given total spin multiplicity, a spinmerism phenomenon.  相似文献   

17.
Hsieh CH  Hsu IJ  Lee CM  Ke SC  Wang TY  Lee GH  Wang Y  Chen JM  Lee JF  Liaw WF 《Inorganic chemistry》2003,42(12):3925-3933
The preparation of complexes trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) (1), cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) (2), trans-[Ni(-SC(6)H(4)-o-NH-)(2)](-) (3), and [Ni(-SC(6)H(4)-o-S-)(2)](-) (4) by oxidative addition of 2-aminophenyl dichalcogenides to anionic [Ni(CO)(SePh)(3)](-) proves to be a successful approach in this direction. The cis arrangement of the two tellurium atoms in complex 2 is attributed to the intramolecular Te.Te contact interaction (Te.Te contact distance of 3.455 A). The UV-vis electronic spectra of complexes 1 and 2 exhibit an intense absorption at 936 and 942 nm, respectively, with extinction coefficient epsilon > 10000 L mol(-)(1) cm(-)(1). The observed small g anisotropy, the principal g values at g(1) = 2.036, g(2) = 2.062, and g(3) = 2.120 for 1 and g(1) = 2.021, g(2) = 2.119, and g(3) = 2.250 for 2, respectively, indicates the ligand radical character accompanied by the contribution of the singly occupied d orbital of Ni(III). The X-ray absorption spectra of all four complexes show L(III) peaks at approximately 854.5 and approximately 853.5 eV. This may indicate a variation of contribution of the Ni(II)-Ni(III) valence state. According to the DFT calculation, the unpaired electron of complex 1 and 2 is mainly distributed on the 3d(xz)() orbital of the nickel ion and on the 4p(z)() orbital of selenium (tellurium, 5p(z)()) as well as the 2p(z)() orbital of nitrogen of the ligand. On the basis of X-ray structural data, UV-vis absorption, electron spin resonance, magnetic properties, DFT computation, and X-ray absorption (K- and L-edge) spectroscopy, the monoanionic trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) and cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) complexes are appositely described as a resonance hybrid form of Ni(III)-bis(o-amidochalcogenophenolato(2-)) and Ni(II)-(o-amidochalcogenophenolato(2-))-(o-iminochalcogenobenzosemiquinonato(1-) pi-radical; i.e., complexes 1 and 2 contain delocalized oxidation levels of the nickel ion and ligands.  相似文献   

18.
利用基于密度泛函理论(DFT)的第一性原理的FP_LAPW方法, 对以铜离子为磁性中心的化合物[Cu(μ-cbdca)(H2O)]n(cbdca=cyclobutanedicarboxylate)的电子结构及磁性质进行了计算. 对该材料的铁磁性、反铁磁性和非磁性三种状态下的总能量进行了计算. 计算结果表明, [Cu(μ-cbdca)(H2O)]n的铁磁态能量最低, 该化合物为稳定的铁磁性物质, 该结果与实验吻合较好. 对原子磁矩的计算结果发现, 铜原子对化合物磁性的贡献较大, 双齿配体上的氧原子和碳原子的贡献相对较小.  相似文献   

19.
Paramagnetic (1)H NMR and electron paramagnetic resonance (EPR) spectroscopies and density functional theory (DFT) spin density calculations were selectively performed on the [{(NH(3))(5)Ru}(2)(μ-L)](3+,?4+,?5+) complexes, where L is 2,3,5,6-tetrachloro-, 2,5-dichloro-, 2,5-dimethyl-, and unsubstituted 1,4-dicyanamidobenzene dianion, to characterize the electronic structure of these complexes. EPR spectra of the [{(NH(3))(5)Ru}(2)(μ-L)](3+) complexes in N,N'-dimethylformamide at 4 K showed a ruthenium axial signal, and thus the complexes are [Ru(II),L(2-), Ru(III)] mixed-valence systems. DFT spin density calculations of [{(NH(3))(5)Ru}(2)(μ-L)](3+) where L = 1,4-dicyanamidobenzene dianion gave mostly bridging-ligand centered spin distribution for both vacuum and implicit solvent calculations, in poor agreement with EPR, but more realistic results were obtained when explicit electrostatic interactions between solute and solvent were included in modeling. For the [{(NH(3))(5)Ru}(2)(μ-L)](4+) complexes, EPR spectroscopy showed no signal down to 4 K. Nevertheless, solvent-dependent (1)H NMR data and analysis support a [Ru(III),L(2-), Ru(III)] state. Hyperfine coupling constants (A(c)/h) of trans- and cis-ammine and phenyl hydrogens were determined to be 17.2, 3.8, and -1.5 MHz respectively. EPR studies of the [{(NH(3))(5)Ru}(2)(μ-L)](5+) complexes showed a metal-radical axial signal and based on previously published (1)H NMR data, a [Ru(IV),L(2-), Ru(III)] state is favored over a [Ru(III),L(-), Ru(III)] state.  相似文献   

20.
Two Cu(I) complexes based on the thioethyl‐bridged triazol‐pyridine ligand with tetrathiafulvalene unit (TTF‐TzPy, L ), [Cu(I)(Binap)(L)]BF4 ( 5 , Binap=2,2’‐bis(diphenylphosphino)‐1,1’‐binaphthyl) and [Cu(I)(Xantphos)(L)]BF4 ( 6 , Xantphos=9,9‐dimethyl‐4,5‐bis(diphenylphosphino)‐xanthene), have been synthesized. All new compounds are characterized by elemental analyses, 1H NMR and mass spectroscopies. The complex 5 has been determined by X‐ray structure analyses which shows that the central copper (I) ion assumes distorted tetrahedral geometry. The photophysical, computational and electrochemical properties of L and 5 ‐ 6 have been investigated. The most representative molecular orbital energy‐level diagrams and the spin‐allowed singlet? singlet electronic transitions of the three compounds have been calculated with density functional theory (DFT) and time‐dependent DFT (TD‐DFT). The luminescence bands of Cu(I) complexes 5 ‐ 6 have been assigned as mixed intraligand and metal‐to‐ligand charge transfer 3(MLCT+π→π*) transitions through analysis of the photophysical properties and DFT calculations. The electrochemical studies reveal that 5 ‐ 6 undergo reversible TTF/TTF+?/TTF2+ redox processes and one irreversible Cu+→Cu2+ oxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号