首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid) [notpH(6), C(9)H(18)N(3)(PO(3)H(2))3] with different lanthanide salts result in four types of Ln-notp compounds: [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(NO(3))(H(2)O)].4H2O (1), [Ln = Eu (1 Eu), Gd (1 Gd), Tb (1 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]Cl.3H2O (2) [Ln = Eu (2 Eu), Gd (2 Gd), Tb (2 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.8H2O, (3) [Ln = Eu (3 Eu), Gd (3 Gd)], and [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.3H2O (4), [Ln = Gd (4 Gd), Tb (4 Tb)]. Compounds within each type are isostructural. In compounds 1, dimers of {Ln2(notpH4)2(NO3)2(H2O)2} are found, in which the two lanthanide atoms are connected by two pairs of O-P-O and one pair of mu-O bridges. The NO3- ion serves as a bidentate terminal ligand. Compounds 2 contain similar dimeric units of {Ln2(notpH4)2(H2O)2} that are further connected by a pair of O-P-O bridges into an alternating chain. The Cl- ions are involved in the interchain hydrogen-bonding networks. A similar chain structure is also found in compounds 3; in this case, however, the chains are linked by ClO4- counterions through hydrogen-bonding interactions, forming an undulating layer in the (011) plane. These layers are fused through hydrogen-bonding interactions, leading to a three-dimensional supramolecular network with large channels in the [100] direction. Compounds 4 show an interesting brick-wall-like layer structure in which the neighboring lanthanide atoms are connected by a pair of O-P-O bridges. The ClO4- counterions and the lattice water molecules are between the layers. In all compounds the triazamacrocyclic nitrogen atoms are not coordinated to the Ln(III) ions. The anions and the pH are believed to play key roles in directing the formation of a particular structure. The fluorescence spectroscopic properties of the Eu and Tb compounds, magnetic properties of the Gd compounds, and the catalytic properties of 4 Gd were also studied.  相似文献   

2.
利用水热合成手段,(2-吡啶甲基)胺基甲基膦酸、草酸盐与醋酸钆(或醋酸铽)配位组装得到2个同构的稀土化合物Ln2(pmampH)(C2O4)2.5(H2O)3.4H2O(Ln=Gd(1),Tb(2))。在2个化合物中,网状的{Ln2(C2O4)2.5}n层通过{LnO8}多面体与{PO3C}四面体的共角连接,形成三维开放结构。沿b方向,可以观察到一维孔道,它们被未配位的(2-吡啶甲基)胺基以及晶格水分子占据。化合物2在部分或全部脱去结构中的配位以及晶格水以后,可以保持它的骨架结构。磁性研究表明化合物1表现出顺磁行为,2则表现出主要的铁磁性相互作用。化合物2以及它的脱水产物的荧光性质也被测定,都表现出Tb(Ⅲ)的特征发射,能够发出绿光。  相似文献   

3.
Eleven new lanthanide oxalatophosphonate hybrids with a 2D layered structures, namely, [Ln(H(3)L)(C(2)O(4))]·2H(2)O (Ln = La-Dy, Er and Y, H(4)L = C(6)H(5)CH(2)N(CH(2)PO(3)H(2))(2)), have been synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction, X-ray powder diffraction, infrared spectroscopy, elemental analysis and thermogravimetric analysis. Compounds 1-11 are isomorphous and they exhibit a 2D framework structure. Two {LnO(8)} polyhedra and four {CPO(3)} tetrahedra are interconnected into a unit via corner-sharing, and the so-built units are bridged by the oxalate anions into a layer. The result of connections in this manner is the formation of a 24-atom window. The thermal stabilities and guest desorption-sorption properties of compounds 1-11 have been investigated. The luminescent properties of compounds 5, 6, 8 and 9 have also been studied.  相似文献   

4.
Liu B  Li BL  Li YZ  Chen Y  Bao SS  Zheng LM 《Inorganic chemistry》2007,46(21):8524-8532
Two types of lanthanide diruthenium phosphonate compounds, based on the mixed-valent metal-metal bonded paddlewheel core of Ru(2)(hedp)(2)(3-) [hedp = 1-hydroxyethylidenediphosphonate, CH(3)C(OH)(PO(3))(2)], have been prepared with the formulas Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)2].5.5H(2)O (1.Ln, Ln = La, Ce) and Ln(H(2)O)4[Ru(2)(hedp)(2)(H(2)O)(2)].8H(2)O (2.Ln, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er). In both types, each Ru(2)(hedp)2(H2O)23- unit is linked by four Ln(3+)ions through four phosphonate oxygen (OP) atoms and vice versa. The geometries of the {LnO(P4)} group, however, are different in the two cases. In 1.Ln, the geometry of {LnO(P4)} is closer to a distorted plane, and thus a square-grid layer structure is found. In 2.Ln, the geometry of {LnO(P4)} is better described as a distorted tetrahedron; hence, a unique PtS-type open-framework structure is observed. The channels generated in structures 2.Ln are filled with water aggregates with extensive hydrogen-bond interactions. The magnetic and electrochemical properties are also investigated.  相似文献   

5.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

6.
Five different types of the lanthanide sulfate-carboxylates family, [La(2)(SO(4))(Himdc)(2)(H2O)2] , [Gd(2)(SO(4))(2)(Himdc)(H2O)3].H2O , [Ln(2)(SO(4))(2)(Himdc)(H2O)(3)].H2O (Ln = Gd3a, Eu3b), [Eu(6)Cu(SO(4))(6)(Himdc)(4)(H2O)(14)] , and [Ln(Himc)(SO(4))(H2O)] (Ln = Eu5a, Gd5b, Tb5c, Dy5d, Er5e); H(2)imc = 4-imidazolecarboxylic acid, H(3)imdc = 4,5-imidazoledicarboxylic acid) have been obtained by hydrothermal reactions of Ln(2)O(3), transition metal sulfates and H(3)imdc at 170 degrees C and characterized by means of elemental analyses, IR, TG analysis, luminescence spectroscopy and single crystal X-ray diffraction. The 3D structure of 1 is constructed from alternately linkages of organic {La(Himdc)} layers and inorganic {La(2)O(2)(SO(4))} layers, with the La atoms as hinges. 2 and 3a/3b both contain alternately arranged 1D left- and right-handed helical {Ln(imdc)} chains bridged by SO(4)(2-) anions to form a 3D framework with 1D rectangle-like channels along the b axis. The structural differences of 2 and 3a/3b lie in the linkages of the SO(4)(2-) anions. Complex 4 consists of 2D tubular Eu-sulfate layers pillared by {Cu(Himdc)(2)} units to generate a 3D network. Complexes 5a-5e possess 2D bamboo-raft-like layer structures based on helical tubes. Interestingly, H(2)imc comes from the in-situ decarboxylation of H(3)imdc in the hydrothermal reactions. The luminescence properties of the complexes 3a, 4, 5a 5c, 5d were investigated in solid state at room temperature.  相似文献   

7.
Song JL  Lei C  Mao JG 《Inorganic chemistry》2004,43(18):5630-5634
Hydrothermal reactions of lanthanide metal salts with MeN(CH(2)CO(2)H)(CH(2)PO(3)H(2)) (H(3)L) and 5-sulfoisophthalic acid monosodium salt (NaH(2)BTS) lead to four isomorphous lanthanide carboxylate-phosphonate-sulfonate hybrids, namely, Ln(H(2)L)(HBTS)(H(2)O)(2).H(2)O (Ln = La (1), Pr (2), Nd (3), Gd (4)). Their structures have been established by X-ray single-crystal diffraction. The interconnection of the lanthanide(III) ions by carboxylate-phosphonate ligands results in a 1D double chain; these double chains are further bridged by bidentate bridging carboxylate-sulfonate ligands to form a <011> layer. The luminescent properties of compounds 3 and 4 have also been studied.  相似文献   

8.
The syntheses and crystal structures of the first copper(I) phosphonate, Cu2(H3L)(bipy)(2).2H2O 1 (H5L = C4HO3N(CH2PO3H2)2), which is also the first example of metal phosphonates formed by a type of organic reaction, and a novel luminescent Mn(II) squarate diphosphonate, {Mn[NH(CH2PO3H)2](H2O)2}2{Mn(C4O4)(H2O)4}.(C4H2O4) 2, have been reported. The structure of 1 features a layer architecture in which the Cu(I) centers are three coordinated, and the newly formed ligand acts as a bidentate metal linker. Compound 2 is composed of 1D chains of Mn[NH(CH2PO3H)2](H2O)2, 1D chains of {Mn(C4O4)(H2O)4}, as well as the neutral squaric acid molecules. These three types of building units are interconnected via hydrogen bonding.  相似文献   

9.
Simple silylamine elimination reactions of calix[4]-pyrrole [R(2)C(C(4)H(2)NH)](4) (R = Me (1), {-(CH(2))(5)-}(0.5) (2)) with 2 equiv. of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) (Ln = Nd, Sm, Dy) in reflux toluene, afforded the novel dinuclear alkali metal-free trivalent lanthanide amido complexes (η(5):η(1):η(5):η(1)-R(8)-calix[4]-pyrrolyl){LnN(SiMe(3))(2)}(2) (R = Me, Ln = Nd (3), Sm (4), Dy (5); R = {-(CH(2))(5)-}(0.5), Ln = Nd (6), Sm(7)). The complexes were fully characterized by elemental analyses, spectroscopic analyses and single-crystal X-ray analyses. X-ray diffraction studies showed that each lanthanide metal was supported by bispyrrolyl anions in an η(5) fashion and along with three nitrogen atoms from N(SiMe(3))(2) and two other pyrroyl rings in η(1) modes formed the novel bent-sandwiched lanthanide amido bridged trivalent lanthanide amido complexes, similar to ansa-cyclopentadienyl ligand-supported lanthanide amides with respect to each metal center. The catalytic activities of these organolanthanide complexes as single component l-lactide polymerization catalysts were studied.  相似文献   

10.
Crystallographic and luminescence studies on salts of the two-coordinate carbene cation, [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](+), demonstrate the ability of the cation to exist in three different states of aggregation. In colorless, non-luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]Cl the cation crystallizes as a monomer with the nearest gold(i) center 6.7890(11) A away. Colorless, luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]AsF(6) forms dimers with an AuAu separation of 3.1288(4) A. These dimers form weakly associated extended chains of cations with additional AuAu separations of 3.6625(5) A. [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)]PF(6) is isostructural. Yellow, luminescent [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](3)(AsF(6))(2)Cl.0.5(H(2)O)(2) and [Au{C(NHCH(3))(NHCH(2)CH(2)OH)}(2)](3)(PF(6))(2)Cl.0.5(H(2)O)(2) form trimers that further aggregate into extended chains with rather short AuAu separations of 3.1301(14) A, 3.1569(14) A and 3.1415(14) A. Absorption, emission and excitation spectra are reported for these salts. The excitation and emission results from the interactions between the gold centers and involves transitions between the filled d(z)((2)) band and the empty p(z) bands with the z axis pointing along the chain of cations.  相似文献   

11.
Two isostructural tetranuclear lanthanide clusters of general formula [Ln(III)(4)(μ(3)-OH)(2)(o-van)(4)(O(2)CC(CH(3))(3))(4)(NO(3))(2)]·CH(2)Cl(2)·1.5H(2)O (Ln = Gd (1) and Dy (2)) (o-van = 3-methoxysalicylaldehydato anion) are reported. The metallic cores of both complexes display a planar 'butterfly' arrangement. Magnetic studies show that both are weakly coupled, with 2 displaying probable SMM behaviour.  相似文献   

12.
The reaction of a double-betaine-containing ligand with LnPMo(12)O(40)·nH(2)O (Ln = Dy, Tb and Er) led to the isolation of new polyoxometalate-templated lanthanide-organic hybrid layers with the molecular formula [Ln(L)(1.5)(H(2)O)(5)][PMo(12)O(40)]·1.5CH(3)CN·2H(2)O (Ln = Dy (1), Tb (2) and Er (3); L = 1,4-bis(pyridinil-4-carboxylato)-l,4-dimethylbenzene). All compounds were characterized by elemental analyses, TG analyses, IR and the single-crystal X-ray diffraction. Compounds 1-3 are isostructural and possess a 2D undulating cationic network [Ln(L)(1.5)(H(2)O)(5)](n)(3n+) with the honeycomb-like cavities. Interestingly, the interval 2D networks are further connected by the H-bonds to form a 3D supramolecular framework. Moreover, two of such identical supramolecular frameworks are 2-fold interpenetrated with each other and encapsulate the α-Keggin-type [PMo(12)O(40)](3-) anionic templates and the solvent molecules. These composite compounds display both luminescent properties (induced by organic ligands and/or lanthanide ions) and electrocatalytic activities towards the reduction of nitrite.  相似文献   

13.
Based on an unsymmetrical 2-pyridylphosphonate ligand, two types of Ln(III)-Cu(II) compounds with three-dimensional structures were obtained under hydrothermal conditions, namely, Ln(2)Cu(3)(C(5)H(4)NPO(3))(6).4H(2)O (1.Ln; Ln=La, Ce, Pr, Nd) and Ln(2)Cu(3)(C(5)H(4)NPO(3))(6) (2.Ln; Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). Compounds 1.Ln are isostructural and crystallize in chiral cubic space group I2(1)3. In these structures, each Ln ion is nine-coordinate and has a tricapped triprismatic geometry, while each Cu center is six-coordinate with an octahedral environment. The {LnO(9)} polyhedra and {CuN(2)O(4)} octahedra are connected by edge sharing to form an inorganic open framework structure with a 3-connected 10-gon (10,3) topology in which the Ln and Cu atoms are alternately linked by the phosphonate oxygen atoms. Compounds 2.Ln are isostructural and crystallize in trigonal space group R3. In these structures, the {LnO(6)} octahedra are triply bridged by the {CPO(3)} tetrahedra by corner sharing to form an infinite chain along the c axis. Each chain is connected to its six equivalents through corner sharing of {CPO(3)} tetrahedra and {CuN(2)O(2)} planes to form a three-dimensional framework structure in which the Ln and Cu atoms are linked purely by O-P-O units. The formation of these two types of structures is rationalized by quantum chemical calculations, which showed that both the lanthanide contraction and the electron configuration of Cu(II) play important roles. When Cu(II) was replaced by Zn(II), only the first type of compounds resulted. The magnetic properties of complexes 1.Ln and 2.Ln were investigated. The nature of Ln(III)-Cu(II) (Ln=Ce, Pr, Nd) interactions is illustrated by comparison with their Ln(III)-Zn(II) analogues.  相似文献   

14.
A series of lanthanide and lanthanide-transition metal compounds with isonicotinic acid (Hina) and oxalate ligands have been synthesized under hydrothermal reactions. X-Ray crystal structure analyses reveal that they have a rich structural chemistry. Three distinct structure types were exhibited with decreasing lanthanide radii: [LnCu(ina)(2)(C(2)O(4))].H(2)O (Ln=La 1, Pr 2, Nd 3) for type I, [Ln(ina)(C(2)O(4))(H(2)O)(2)] (Ln=Sm 4, Eu 5, Gd 6) for type II, and [Ln(ina)(C(2)O(4))(0.5)(OH)] (Ln=Tb 7, Dy 8, Er 9) for type III. The structure of type I has a 3d-4f heterometallic structure and consists of 1D channels along the b axis, which filled with guest water molecules. They exhibit a first 3D uninodal eight-connected framework with a unique 3(6).4(18).5(3).6 topology. Type II has 2D Ln-ina-C(2)O(4) 4(4)-nets, the nitrogen donors of the ina ligand are not coordinated to any of the metal ions, inducing the lower dimensional networks. Type III consists of 2D Ln-C(2)O(4) layers pillared by ina ligands to form a pillared-layer framework. The structure evolution is due to the versatile coordination modes of ina and oxalate ligands as well as the lanthanide contraction effect. Notably, the oxalate ligand was in situ synthesized from orotic acid through an oxidation-hydrolysis reaction. The type III materials show high thermal stability; luminescence properties of Nd 3, Sm 4, Eu 5, Tb 7 are also investigated.  相似文献   

15.
Xia J  Zhao B  Wang HS  Shi W  Ma Y  Song HB  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2007,46(9):3450-3458
3,5-pyrazoledicarboxylic acid (H3L) reacts with nitrate salts of lanthanide(III) (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) under hydrothermal conditions to form a series of lanthanide polymers 1-9. These nine polymers have the same crystal system of monoclinic, but they exhibit three different kinds of metal-organic framework structures. The complexes {[Ln2(HL)3(H2O)4].2H2O}n (Ln=Pr (1), Nd (2), and Sm (3)) were isostructural and exhibited porous 3D frameworks with a Cc space group. The complexes {[Ln2(HL)3(H2O)3].3H2O}n (Ln=Eu (4), Gd (5), and Tb (6)) were isostructural and built 2D double-decker (2DD) frameworks with a P21/c space group. The complexes {[Ln(HL)(H2L)(H2O)2]}n ((Ln=Dy (7), Ho (8), and Er (9)) were also isostructural and formed 2D monolayer (2DM) frameworks with a P21/n space group. The structure variation from the 3D porous framework to the 2D double-decker to the 2D monolayer is attributed to the lanthanide contraction effect. Notably, six new coordination modes of 3,5-pyrazoledicarboxylic acid were observed, which proved that 3,5-pyrazoledicarboxylic acid may be used as an effective bridging ligand to assemble lanthanide-based coordination polymers. The photophysical and magnetic properties have also been investigated.  相似文献   

16.
在水热条件下,合成了6个新的镧系金属配位聚合物,Ln2(SSA)2(phen)4(H2O)2(Ln=Er(Ⅲ) (1),Yb(Ⅲ) (2)),[La2(SSA)2(phen)2(H2O)4·(phen)·(H2O)1.33相似文献   

17.
Reactions of lanthanide perchlorates and manganese acetate with Schiff-base ligand (H(4)L = 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol) in methanol in the presence of triethylamine yielded two hexanuclear heterometallic clusters of general formula [Mn(4)(ΙΙΙ)Ln(2)(ΙΙΙ)(H(2)L)(2)(HL)(2)(CH(3)COO)(4)(CH(3)O)(2)(CH(3)OH)(4)](ClO(4))(2)·6CH(3)OH [Ln = La(ΙΙΙ) (1), Nd(ΙΙΙ) (2)]. 1 and 2 are isostructural, with the metal centres consisting of a nonplanar [Mn(4)(ΙΙΙ)Ln(2)(ΙΙΙ)(μ(2)-O)(8)(μ(3)-OR)(2)](8+) core. Variable-temperature solid state magnetic susceptibilities measurements of 1 and 2 in the temperature 2-300 K were performed, indicating dominant antiferromagnetic exchange interactions between the metal centres in both compounds. Alternating current (ac) susceptibility data for 2 displays out-of-phase signal suggesting slow relaxation of magnetization whereas no out-of-phase signal is observed in 1, highlighting the incorporation of lighter lanthanide leads to SMM property.  相似文献   

18.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

19.
Gao Q  Wang X  Jacobson AJ 《Inorganic chemistry》2011,50(18):9073-9082
A chiral cluster compound, dipotassium bis(μ-tartrato)diantimony(III), K(2)Sb(2)L(2) (H(4)L = L-tartaric acid), was used as a secondary building unit to react with lanthanide ions. Three series of homochiral coordination compounds were obtained: 0D [La(H(2)L)(H(2)O)(4)](2)[Sb(2)L(2)]·7H(2)O (0D-La), 1D Ln(Sb(2)L(2))(H(2)O)(5)(NO(3))·H(2)O (1D-Ln) (Ln = La-Lu or Y, expect Pm), 2D(I) [(Ln(H(2)O)(5))(2)(Sb(2)L(2))(3)]·5H(2)O (2D(I)-Ln) (Ln = La, Ce, Pr), and 2D(II) [(La(H(2)O)(5))(2)(Sb(2)L(2))(3)]·6H(2)O (2D(II)-La). Single-crystal X-ray diffraction studies indicated that 0D-La crystallizes in space group P1, and the structure contains isolated Sb(2)L(2)(2-) units located between chains of composition La(H(2)L)(H(2)O)(4). The series of 1D-Ln compounds is isostructural and crystallizes in space group P2(1)2(1)2(1). In the structure, Sb(2)L(2)(2-) units are coordinated to two Ln ions by two out of the four free tartrate oxygen atoms to form a linear chain. To the best of our knowledge, this is the first example of a homochiral structure that can be formed for the whole lanthanide series. In the 2D(I)-Ln structure series, which crystallizes in space group P2(1), the Sb(2)L(2)(2-) units have two distinct coordination modes: one is the same as that found in the 1D structure, while in the other all four free tartrate oxygen atoms are coordinated to four Ln ions in a very distorted tetrahedral arrangement. The connectivity between Sb(2)L(2)(2-) secondary units and LnO(9) polyhedra gives rise to infinite layers. 2D(II) [(La(H(2)O)(5))(2)(Sb(2)L(2))(3)]·6H(2)O, which crystallizes in space group C2, has a similar network to the 2D(I)-Ln compounds. The trends in lattice parameters, bond lengths, and ionic radii in the 1D-Ln series were analyzed to show the effect of the lanthanide contraction.  相似文献   

20.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(24):9780-9788
Hydrothermal reactions of lanthanide(III) salts with m-sulfophenylphosphonic acid (H3L1) and 1,10-phenanthroline (phen) or N,N'-piperazinebis(methylenephosphonic acid) (H4L2) afforded six novel lanthanide(III) sulfonate-phosphonates based on tetranuclear clusters, namely, [La(2)(L1)2(phen)4(H2O)].4.5H2O (1), [Ln2(L1)2(phen)2(H2O)5].3H2O (Ln = Nd, 2; Eu, 3; Er, 4), and [Ln2(HL1)(H2L2)2(H2O)4].8H2O (Ln = La, 5; Nd, 6). Compounds 2-4 contain discrete tetranuclear lanthanide(III) cluster units in which four lanthanide(III) ions are bridged by two tridentate and two tetradentate phosphonate groups. In compound 1, the tetranuclear clusters are further interconnected into a 1D chain through the coordination of the sulfonate groups. The structures of compounds 5 and 6 can be viewed as a 3D architecture based on a different types of tetranuclear cluster units that are interconnected by bridging H2L2 anions. In the tetranuclear clusters of compounds 5 and 6, the four lanthanide(III) centers are interconnected by only two HL1 ligands. Compound 2 is a luminescent material in the near-IR region, whereas compound 3 displays a strong luminescent emission band in the red-light region. Magnetic property measurements of compounds 2-4 and 6 indicate that there are strong antiferromagetic interactions between magnetic centers within the cluster units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号