首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
The influence of microwave irradiation on the mass transfer kinetics of an insulin variant in reversed-phase liquid chromatography (RPLC) was investigated. The elution band profiles of insulin were obtained by the pulse-response method, under linear conditions. The RPLC column was placed in a microwave oven and the incremental change in the temperature of the column effluent stream at various microwave energies and mobile phase flow rates were measured. The microwave energy dissipated in the column was set at 15 and 30 W and the mobile phase flow rate was varied from 1.0 to 2.5 mL/min at a mobile phase composition of acetonitrile, water, and trifloroacetic acid (31:69:0.1, v/v/v). The experimental data were analyzed using the conventional method of moment analysis and the lumped pore diffusion model. Regardless of mobile flow rates, the effluent temperatures measured at 15 and 30 W microwave power input were 25+/-1 and 30+/-1 degrees C, respectively. The effect of microwave irradiation on the mass transfer of the variant insulin was determined by comparing the band profiles obtained under the same experimental conditions, at the same column temperature, with and without irradiation. The calculated intraparticle diffusion coefficient, D(e), at 30 W (30+/-1 degrees C) microwave irradiation was ca. 20% higher than without irradiation at 30+/-1 degrees C. These preliminary results suggest that microwave irradiation may have a significant influence on the intraparticle diffusion of insulin in RPLC.  相似文献   

2.
The influence of microwave (MW) irradiation on the mass transfer kinetics in reversed-phase liquid chromatography (RPLC) was studied by placing a column in a microwave oven and measuring the incremental change in the temperature of the column effluent stream at various microwave energies and mobile phase compositions. The microwave energy dissipated in the column was set between 15 and 200 W and the mobile phase composition used varied from 100 to 70, 50, and 10% methanol in water at 1.2 mL/min. At all the mobile phase compositions considered, the effluent temperature increased with increasing microwave energy. At 70% methanol, the mobile phase flow rate was set at 1.2, 2.0, and 2.8 mL/min. At 1.2 mL/min, the effluent temperatures at the lowest (15 W) and highest (200 W) microwave energy inputs were 25 +/- 1 degrees C and 41 +/- 1 degrees C for pure methanol, 25 +/- 1 degrees C and 48 +/- 1 degrees C for 70% methanol, 25 +/- 1 degrees C and 50 +/- 1 degrees C for 50% methanol, and, 25 +/- 1 degrees C and 52 +/- 1 degrees C for 10% methanol, respectively. With 70% methanol and microwave energy inputs of 15, 30, and 50 W, the effluent temperature did not change with increasing flow rate; a considerable change was observed at 100, 150, and 200 W between 1.2 and 2.0 mL/min and none between 2.0 and 2.8 mL/min. Chromatographic elution band profiles of propylbenzene were recorded under linear conditions, in 70% methanol solutions, for microwave energy inputs of 0, 15 and 30 W, at constant temperature. The intraparticle diffusion coefficient, De, under microwave irradiation was ca. 20% higher than without irradiation. These preliminary results suggest that microwave irradiation may have a considerable influence on intraparticle diffusion in RPLC.  相似文献   

3.
The mass transfer kinetics of butyl benzoate, eluted on a monolithic RPLC column with methanol-water (65:35, v/v) as the mobile phase was investigated, using the perturbation method to acquire isotherm data and the mobile phase velocity dependence of the height equivalent to a theoretical plate of perturbation peaks to acquire kinetics data. The equilibrium isotherm of butyl benzoate is accounted for by the liquid-solid extended multilayer BET isotherm model. The total porosity of the column varies much with the butyl benzoate concentration, influencing strongly the parameters of its mass transfer kinetics and the profiles of the breakthrough curves. Using all these parameters, the general rate model of chromatography predicts band profiles and Van Deemter curves that are in excellent agreement with experimental results provided the influence of concentration on the porosity is properly taken into account. This agreement confirms the validity of the models selected for the isotherm and for the mass transfer kinetics.  相似文献   

4.
The shape of breakthrough curves and elution profiles depends strongly on the course of the specific equilibrium functions characterizing the chromatographic system. For a highly efficient system the equilibrium theory provides a methodology how to predict the band profiles. The concept is frequently applied to analyze single component systems characterized by isotherms possessing simple shapes (Langmuir or anti-Langmuir behaviour). However, adsorption isotherms often possess more complicated shapes and have inflection points in their courses. This leads to the development of composite concentration waves and results in complex shapes of breakthrough curves and elution profiles. In this paper, the equilibrium theory is used to predict breakthrough curves for a chromatographic system characterized by an adsorption isotherm with two inflection points. The results obtained are validated by comparing with numerical solutions of the equilibrium dispersive model.  相似文献   

5.
The effect of pressure on the chromatographic behavior of two insulin variants in RPLC was investigated on a YMC-ODS C18 column, under nonlinear conditions. The adsorption isotherm data of porcine insulin and Lispro were measured at average column pressures ranging from 52 to 242 bar. These data fit well to the Toth and the bi-Langmuir isotherm models. The saturation capacity increases rapidly with increasing pressure while the affinity (or equilibrium) constant and the parameter characterizing the surface heterogeneity decrease. It is noteworthy that the distribution coefficient of the insulin variants increases with increasing pressure whereas their equilibrium constant b decreases for porcine insulin and increases for Lispro. The association constant b(ds), which characterizes the adsorption and desorption equilibrium of insulin in the system, increases with increasing pressure. The excellent agreement between the experimental overloaded profiles recorded under different pressures and those calculated using the POR model suggests that the chromatographic behavior of insulin is controlled more by equilibrium thermodynamics than by the mass transfer kinetics. The latter seems to be nearly independent of the average column pressure. Thus, increasing the average column pressure is an efficient, albeit costly, way to increase the loading capacity of the column, hence the production rate in preparative chromatography.  相似文献   

6.
7.
Single-component adsorption isotherm data were acquired by frontal analysis (FA) for six low molecular weight compounds (phenol, aniline, caffeine, o-toluidine, p-toluidine and propylbenzoate) on one Chromolith-C18 column (#30, Merck, Darmstadt, Germany), using different methanol:water solutions (composition between 60/40 and 15/85 v/v, depending on the solute) as the mobile phase. These data were modeled for best agreement between the experimental data points and the adsorption isotherm model. The adsorption-energy distributions were also derived and used for the selection of the best isotherm model. Widely different models were obtained for these six compounds, four being convex upward (i.e., Langmuirian) and two having at least one inflection point. Overloaded band profiles corresponding to two different sample sizes (a low and a high loading factor) were recorded on six monolithic columns (#30-35) belonging to the same manufactured lot. These experimental band profiles were compared to the profiles calculated from the isotherm measured by FA on the first column, using the equilibrium-dispersive (ED) model of chromatography. For four of the six columns (#30, #32, #33, and #35), the reproducibility was better than 5 and 2.5% for the low and the high concentration profiles, respectively. On the other two columns (#31 and #34), the bands showed significant and systematic retention time shifts for all six compounds (with nearly identical band shapes), the relative adsorption being between 6 and 15% stronger on column #31 or between 2 and 7% lower on column #34. These differences seem to be correlated with the differences in the total porosities of these columns, which differ by 3% from columns #31 to #34, the higher porosity column giving the stronger adsorption.  相似文献   

8.
A Chiralpak AD-H column packed with amylose tris(3,5-dimethylphenylcarbamate) coated on silica gel was used to study the enantioseparation of nadolol by HPLC. The bed voidage, axial dispersion coefficient, overall mass transfer coefficients as well as equilibrium constants for the chromatographic enantiomeric separation were evaluated by moment analysis on the basis of the solid film linear driving force model. The equilibrium constants were found to be 3.81, 5.24, 9.45 and 19.41 for the stereoisomers (SRS)-, (SRR)-, (RSS)- and (RSR)-nadolol, respectively. Their overall mass transfer coefficients were found to be 1841.8, 1254.8, 799.4 and 401.7 min(-1) respectively. Temperature effect on the enantiomeric separation and thermodynamic properties including enthalpy and entropy change of binding to the amylose tris(3,5-dimethylphenylcarbamate) stationary phase were also investigated. The moment analysis and the parameters obtained were used to simulate nadolol elution profiles. The simulated results matched the experimental profiles well, which confirmed the validity of model parameters obtained in this study.  相似文献   

9.
Titanium oxide-modified silica was prepared by reaction of silica with titanium tetrabutoxide and then was used as support in the preparation of stationary phases with self-immobilized polybutadiene (PBD) and PBD immobilized through microwave radiation. Chromatographic performance of the stationary phases was evaluated in terms of the efficiency (plates/m), asymmetry (A(s)), retention factor (k) and resolution (R(s)) of two standard sample mixtures, one of then containing the basic compound N,N-dimethylaniline. A microwave irradiation of 30 min at 520 W gave the best efficiency (86,500 N m(-1)), greater than that of a 6-day self immobilized phase (69,500 N m(-1)). Self-immobilized stationary phases prepared with bare silica were also studied for comparison. These resulted in lower chromatographic performance, 43,800 N m(-1), when compared to the self-immobilized phase prepared with titanized silica.  相似文献   

10.
Single component adsorption and desorption isotherms of phenol were measured on a high-efficiency Kromasil-C18 column (N = 15000 theoretical plates) with pure water as the mobile phase. Adsorption isotherm data were acquired by frontal analysis (FA) for seven plateau concentrations distributed over the whole accessible range of phenol concentration in pure water (5, 10, 15, 20, 25, 40, and 60 g/l). Desorption isotherm data were derived from the corresponding rear boundaries, using frontal analysis by characteristic points (FACP). A strong adsorption hysteresis was observed. The adsorption of phenol is apparently modeled by a S-shaped isotherm of the first kind while the desorption isotherm is described by a convex upward isotherm. The adsorption breakthrough curves could not be modeled correctly using the adsorption isotherm because of a strong dependence of the accessible free column volume on the phenol concentration in the mobile phase. It seems that retention in water depends on the extent to which the surface is wetted by the mobile phase, extent which is a function of the phenol concentration, and of the local pressure rate, which varies along the column, and on the initial state of the column. By contrast, the desorption profiles agree well with those calculated with the desorption isotherms using the ideal model, due to the high column efficiency. The isotherm model accounting best for the desorption isotherm data and the desorption profiles is the bi-Langmuir model. Its coefficients were calculated using appropriate weights in the fitting procedure. The evolution of the bi-Langmuir isotherm parameters with the initial equilibrium plateau concentration of phenol is discussed. The FACP results reported here are fully consistent with the adsorption data of phenol previously reported and measured by FA with various aqueous solutions of methanol as the mobile phase. They provide a general, empirical adsorption model of phenol that is valid between 0 and 65% of methanol in water.  相似文献   

11.
A simple and sensitive HPLC method for the determination of phenolic compounds, i.e., phenol (Phe), cresols (Cres) and xylenols (Xyls), was developed. After a pre-column fluorescence derivatization of these compounds with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) at 60 degrees C for 30 min, 11 DIB derivatives were successfully separated within 50 min with an ODS column using CH3CN-H2O-CH3OH (25 + 22 + 53, v/v) as the eluent. The detection limits of DIB derivatives at a signal-to-noise ratio of 3 ranged from 0.15 to 1.09 microM (0.2-1.6 pmol per 20 microliters). The precision of the proposed method for both within- and between-day assays of free and total phenol related compounds was satisfactory (RSD < 9.5%). By the proposed method, Phe and p-Cre could be detected in normal urine samples, and the calculated concentrations of free Phe and p-Cre in unhydrolysed urine samples were 1.5 +/- 1.3 and 23.9 +/- 24.3 microM and those of total Phe and p-Cre in hydrolysed urine samples were 87.3 +/- 81.2 and 200.7 +/- 195.4 microM (n = 21), respectively.  相似文献   

12.
In this work we determined when the state of thermodynamic (full) equilibrium, i.e. time-invariate solute retention, was achieved in gradient elution reversed-phase chromatography. We investigated the effects of flow rate, temperature, organic modifier, buffer type/concentration, stationary phase type, n-butanol as eluent additive, and pore size. We also measured how selectivity varied with reequilibration time. Stationary phase wetting and the ability of the stationary phase to resist changes in pH strongly affect the time needed to reach full equilibrium. For example, full equilibrium is realized with many endcapped stationary phases after flushing with only two column volumes of acetonitrile-water containing 1% (v/v) n-butanol and 0.1% (v/v) trifluoroacetic acid. Trends in retention time (<0.010min) and selectivity become quite small after only five column volumes of reequilibration. We give practical guidelines that provide fast full equilibrium for basic compounds when chromatographed in buffered eluents.  相似文献   

13.
微波辐照方式对CdS和Bi2S3纳米粒子结晶度的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
The effect of traveling microwave irradiation on the crystallinities of CdS nanoparticles and Bi2S3 nanorods was studied. Results showed that as compared with stationary microwave irradiation the crystallinities and the crystal growth of sulfide nanoparticles were improved. Traveling microwave irradiation can supply narrower frequency distribution and stronger power density of irradiation, CdS nanoparticles and Bi2S3 nanorods obtained are better in crystallinities and larger in size than under stationary microwave irradiation.  相似文献   

14.
The reversed-phase liquid chromatography retention of phenol derivatives was investigated over a concentration range of sodium chloride (0-10(-2) M) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) (0-35x10(-3) M) using a porous graphitic carbon (PGC) stationary phase and a methanol/water mixture (50:50 (v/v)) as the mobile phase. A theoretical treatment was developed to investigate the effect of the sodium chloride and hydroxypropyl-beta-cyclodextrin on the equilibrium between the solutes with the PGC surface and the aqueous medium, respectively. The thermodynamic parameter variations were calculated using van't Hoff plots. It was expected that the sodium ion acted on the solute-PGC association process by modifying the surface tension of both the bulk solvent and the PGC surface. The phenol derivative/HP-beta-cyclodextrin complexation was shown to be entropically controlled for all the solutes except for the one which contained the -NO2 group in its structure, i.e. the nitro phenol derivative. A comparison of the compensation temperature of the solute-PGC association process when sodium chloride and HP-beta-CD concentration changed in the mobile phase led to the conclusion that these two modifiers acted via a variation in the hydrophobic effect.  相似文献   

15.
Chu TY  Chang CH  Liao YC  Chen YC 《Talanta》2001,54(6):1010-1171
A rapid method for the derivatization of phenolic antioxidants using microwave irradiation has been developed. Six antioxidatively active phenolic components of wines and fruits, namely gallic acid, gentisic acid, vanillic acid, caffeic acid, ferulic acid and p-coumaric acid were used in the model study. The solution of phenolic acids was evaporated to dryness on a rotary evaporator followed by further drying under microwave irradiation (600 W, 30 s). The resultant residue was dissolved in pyridene and treated with bis(trimethylsilyl)acetamide while irradiated by microwave using high power for 30 s. Controlled reaction was carried out employing bis(trimethylsilyl)trifluoroacetamide under conventional heating for 30 min. The trimethylsilyl derivatives were identified and quantified on a gas chromatography/mass selective detector. The mass spectral fragmentation patterns of the derivatives obtained by microwave irradiation were identical to those prepared by heating. The yields of microwave-assisted silylation were comparable to those from conventional heating. The rsd were less than 8% for six replicates. The linearity in wine matrix was nearly perfect. This method is a useful protocol to examine the phenolic constituents in wines and agricultural products.  相似文献   

16.
The single and the competitive equilibrium isotherms of nortriptyline and amytriptyline were acquired by frontal analysis (FA) on the C18- bonded discovery column, using a 28/72 (v/v) mixture of acetonitrile and water buffered with phosphate (20 mM, pH 2.70). The adsorption energy distributions (AED) of each compound were calculated from the raw adsorption data. Both the fitting of the adsorption data using multi-linear regression analysis and the AEDs are consistent with a trimodal isotherm model. The single-component isotherm data fit well to the tri-Langmuir isotherm model. The extension to a competitive two-component tri-Langmuir isotherm model based on the best parameters of the single-component isotherms does not account well for the breakthrough curves nor for the overloaded band profiles measured for mixtures of nortriptyline and amytriptyline. However, it was possible to derive adjusted parameters of a competitive tri-Langmuir model based on the fitting of the adsorption data obtained for these mixtures. A very good agreement was then found between the calculated and the experimental overloaded band profiles of all the mixtures injected.  相似文献   

17.
Single-component adsorption isotherm data were acquired by frontal analysis for phenol on a C18-Kromasil packed column, under reversed-phase liquid chromatography conditions, using various methanol-water solutions (30-60%, v/v, methanol). The isotherm model accounting best for these data was the biLangmuir model. With increasing methanol content, the two saturation capacities decrease, particularly that of the high-energy sites, the adsorption constant of the low-energy sites decreases significantly and that of the high-energy sites decreases strongly. These results allow a quantitative investigation of the properties of the high-energy sites (which are not necessarily the so-called active sites), a feature rarely discussed yet. The band profiles calculated with the numerical values of the isotherm model parameters derived by fitting the frontal analysis data to the model and using the equilibrium-dispersive model agree very well with the experimental band profiles in the whole concentration range.  相似文献   

18.
Miyabe K  Okada A 《The Analyst》2002,127(11):1420-1426
Pulse response experiments (i.e., elution chromatography) were made in reversed-phase liquid chromatography (RPLC) using a C18 silica gel column and methanol-water mixtures of different compositions (phi). The moment analysis of the elution peak profiles measured in the RPLC system provided some items of information about four parameters characterizing the retention equilibrium and the mass transfer kinetics in the column, i.e., adsorption equilibrium constant, isosteric heat of adsorption, surface diffusion coefficient and activation energy of surface diffusion. Characteristics of the chromatographic behavior were studied by analyzing the dependence of the four parameters on phi and the correlation between them. It was found that surface diffusion was one of the important processes of molecular migration having a significant contribution to the mass transfer kinetics in the column. Both the adsorption equilibrium constant and the surface diffusion coefficient varied depending on phi. The direction of their changes was approximately opposite, suggesting that the mass transfer in the manner of surface diffusion was restricted owing to the retention of the sample molecules on the stationary phase.  相似文献   

19.
《Analytical letters》2012,45(15):2372-2380
Fluorescein isothiocyanate was used as a label to show that a 3-aminopropylmethyldimethoxysilane (KH 550)-modified capillary column was prepared by microwave irradiation. A bromoacetate-substituted β-cyclodextrin (Br-β-CD) was successfully bound to the KH 550-modified column as a chiral stationary phase for open tubular capillary electrochromatography. Compared with conventional synthesis, the microwave-assisted process significantly decreased the preparation time of the stationary phase from 16 h to 40 min. Baseline chiral separation of 1-phenyl-1,2-ethanediol was achieved using the Br-β-CD modified column.  相似文献   

20.
Adsorption of phenols from wastewater   总被引:8,自引:0,他引:8  
The present work involves an investigation of the possible use of coal, residual coal, and residual coal treated with H3PO4 as a means of removal of phenol from wastewater. The study was realized using batch experiments, with synthetic wastewater having phenol concentration of 1000 ppm. Other low-cost adsorbents such as petroleum coke, coke breeze, rice husk, and rice husk char have also been used. The effect of system variables such as pH, contact time, and temperature has been investigated. The suitability of the Freundlich, Langmuir, and Redlich-Peterson adsorption models to the equilibrium data was investigated for each phenol-adsorbent system. The results showed that the equilibrium data for all the phenol-sorbent systems fitted the Redlich-Peterson model best. Kinetic modeling of removal of phenols was done using the Lagergren first-order rate expression. A series of column experiments were performed to determine the breakthrough curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号