首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Reactions of cinnamonitrile (trans-PhCH=CHCN) with [M(ClO4)(CO)(PPh3)2] (M=Rh or Ir) produce hydrogenation oftrans-PhCH=CHCN to PhCH2CH2CN at 100°C under 3 atm of hydrogen.  相似文献   

2.
A series of chelating bridge functionalized bis-N-heterocyclic carbenes (NHC) complexes of rhodium (I) were prepared by reacting the corresponding imidazolium salts with [Rh(COD)Cl]2 in an in-situ reaction. For the N-methyl substituted complex with a PF6-anion an X-ray crystal structure was exemplary obtained. All complexes were spectroscopically characterized and tested for the hydrosilylation of acetophenone.  相似文献   

3.
4.
A series of crystalline dinuclear rhodium complexes with different bridging diisocyano ligands and different counter ions have been studied by low-temperature crystallographic and solid-state spectroscopic techniques. The Rh-Rh distances vary from 4.5153(3) to 3.0988(7) angstroms, and the twist angles around the Rh-Rh line from 58.3(1) to 0 degree, both depending on the size and conformational rigidity of the bridging ligand. For very long distances as occur in the [Rh(2)(dimen)(4)](2+) salts the absorption is significantly blue-shifted compared to other complexes. For a given cation a shorter Rh-Rh bond gives a red shift of the phosphorescence emission band, indicating a smaller energy gap between the ground and emitting excited states. An exception occurs for the [Rh(2)(1,6-diisocyanohexane)(4)](2+) ion, in which dimer formation in the calixarate salt lengthens the Rh-Rh intramolecular bond length without affecting the emission spectrum.  相似文献   

5.
Bridged rhodium(I) bis(NHC) complexes of the formula [bis-(NHC)Rh(I)PF6] (1c-5c) were synthesized and applied as catalysts in the transfer hydrogenation of acetophenone in 2-propanol. The activity of the rhodium(I) complexes largely depends on the nature of the N-substituents and the applied bases. The synthesized compounds were characterized by elemental analysis, 1H and 13C NMR-spectroscopy and mass spectrometry. The structure of complex 2c was exemplary determined by X-ray analysis.  相似文献   

6.
The solvent-free reaction of ferrocenecarboxaldehyde and diaminoalkanes under solvent-free conditions gave bisferrocenylimines (L) in excellent yields. Cationic rhodium(I) complexes with the formulation [Rh(COD)(L)]ClO4 were prepared by the reaction of [Rh(COD)Cl]2 with the bisferrocenylimines in the presence of silver perchlorate. The compounds were characterised by NMR, IR, MS and elemental analysis. The X-ray crystal structures of two rhodium(I) complexes are also reported.  相似文献   

7.
Reaction of [RhCl(COD)]2, with 1,3-dialkylimidazolinylidene (1) or 1,3-dialkylbenzimidazolinylidene (2) resulted in the formation of rhodium(I) 1,3-dialkylimidazolin-2-ylidene (3a-c) and 1,3-dialkylbenzimidazolin-2-ylidene (4a,b) complexes. Triethylsilane reacts with acetophenone derivatives in the presence of catalytic amounts of RhCl(COD)(1,3-dialkylimidazolin-2-ylidene) or RhCl(COD)(1,3-dialkylbenzimidazolin-2-ylidene) to give the corresponding silylethers in good yield (57–98%).  相似文献   

8.
9.
Summary The preparations and characterisation of cationic complexes of the type [Rh(CO)(MeCN)(PR3)2]ClO4, [Rh(CO)L(PR3)2]ClO4 (L=py or 2-MeOpy), [Rh(CO)(L-L)(PR3)2]ClO4 (L-L = bipy or phen) and [Rh(CO)(PR3)3]ClO4 with PR3 = P(p-YC6H4)3 (Y=Cl, F, Me or MeO) are described.  相似文献   

10.
Six new [RhBr(NHC)(cod)] (NHC = N‐heterocyclic carbene; cod = 1,5‐cyclooctadiene) type rhodium complexes ( 4–6 ) have been prepared by the reaction of [Rh(μ‐OMe)(cod)]2 with a series of corresponding imidazoli(in)ium bromides ( 1–3 ) bearing mesityl (Mes) or 2,4,6‐trimethylbenzyl (CH2Mes) substituents at N1 and N3 positions. They have been fully characterized by 1 H, 13 C and heteronuclear multiple quantum correlation NMR analyses, elemental analysis and mass spectroscopy. Complexes of type [(NHC)RhBr(CO)2] (NHC = imidazol‐2‐ylidene) ( 7b–9b ) were also synthesized to compare σ‐donor/π‐acceptor strength of NHC ligands. Transfer hydrogenation (TH) reaction of acetophenone has been comparatively studied by using complexes 4–6 as catalysts. The symmetrically CH2Mes‐substituted rhodium complex bearing a saturated NHC ligand ( 5a ) showed the highest catalytic activity for TH reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
《Polyhedron》1987,6(6):1329-1335
The preparation and properties of cationic rhodium and iridium complexes of types [M(diolefin)L2](ClO4) and [M(diolefin)L(PPh3)](ClO4) [M = Rh, diolefin = 1,5-cyclooctadiene (COD) or 2,5-norbornadiene; M = Ir, diolefin = COD; L = phosphine sulphide] are described. The complexes have been characterized by IR, 1H NMR and 31P NMR spectroscopy. The use of [M(diolefin)L2](ClO4) as catalyst precursors in homogeneous hydrogenation of olefins has been studied.  相似文献   

13.
Summary Dicarbonyl complexes of rhodium(I) [Rh(CO)2(LL)], where LL = salicylaldoximate, 8-oxyquinolinate, glycinate, leucinate, aminophenolate or pyridine carboxylate and [Rh(COD)(LL)], where COD = 1,5-cyclooctadiene, were prepared and characterized by elemental analysis, and i.r. and n.m.r. spectra. Their activity to catalytic hydroformylation of styrene has been evaluated at atmospheric pressure of COH2(11).  相似文献   

14.
Summary The synthesis and properties of cationic complexes of the type [Rh(NBD)L2]ClO4, [Rh(NBD)L(PPh3)]ClO4 and [Rh(CO)L(PPh3)2]ClO4 (L = substituted quinolines) are described. The diolefin complexes catalyse hydrogen transfer from isopropanol to some unsaturated substrates.  相似文献   

15.
The syntheses are described of a range of cationic rhodium(I) thiocarbonyl complexes containing tertiary phosphine, phosphinite, phosphonite and phosphonite ligands.  相似文献   

16.
Cationic palladium(II) and rhodium(I) complexes bearing 1,2-diaryl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutene ligands (DPCB–Y) were prepared and their structures and catalytic activity were examined (aryl = phenyl (DPCB), 4-methoxyphenyl (DPCB–OMe), 4-(trifluoromethyl)phenyl (DPCB–CF3)). The palladium complexes [Pd(MeCN)2(DPCB–Y)]X2 (X = OTf, BF4, BAr4 (Ar = 3,5-bis(trifluoromethyl)phenyl)) were prepared by the reactions of DPCB–Y with [Pd(MeCN)4]X2, which were generated from Pd(OAc)2 and HX in MeCN. On the other hand, the rhodium complexes [Rh(MeCN)2(DPCB–Y)]OTf were prepared by the treatment of [Rh(μ-Cl)(cyclooctene)2]2 with DPCB–Y in CH2Cl2, followed by treatment with AgOTf in the presence of MeCN. The cationic complexes catalyzed conjugate addition of benzyl carbamate to α,β-unsaturated ketones.  相似文献   

17.
Five binuclear nickel(II) complexes have been prepared by simple Schiff base condensation of the compound 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (L) with appropriate aliphatic or aromatic diamine, nickel(II) perchlorate and triethylamine. All the complexes were characterized by elemental and spectral analysis. Positive ion FAB mass spectra show the presence of dinickel core in the complexes. The electronic spectra of the complexes show red shift in the d–d transition. Electrochemical studies of the complexes show two irreversible one electron reduction processes in the range of 0 to −1.4 V. The reduction potential of the complexes shifts towards anodically upon increasing chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves in the range 0.4–1.6 V. The observed rate constant values for catalysis of the hydrolysis of 4-nitrophenyl phosphate are in the range of 1.36 × 10−2–9.14 × 10−2 min−1. The rate constant values for the complexes containing aliphatic diimines are found to be higher than the complexes containing aromatic diimines. Spectral, electrochemical and catalytic studies of the complexes were compared on the basis of increasing chain length of the imine compartment. All the complexes show higher antimicrobial activity than the ligand and metal salt.  相似文献   

18.
The complexes [Rh(CO)2ClL]( 1 ), where L = 2‐aminophenol ( a ), 3‐aminophenol ( b ) and 4‐aminophenol ( c ), have been synthesized and characterized. The ligands are coordinated to the metal centre through an N‐donor site. The complexes 1 undergo oxidative addition ( OA ) reactions with various alkyl halides ( RX ) like CH3I, C2H5I and C6H5CH2Cl to produce Rh(III) complexes of the type [Rh(CO)(COR)XClL], where R = ? CH3( 2 ), ? C2H5( 3 ), X = I; R = C6H5CH2? and X = Cl ( 4 ). The OA reaction with CH3I follows a two‐stage kinetics and shows the order of reactivity as 1b > 1c > 1a . The minimum energy structure and Fukui function values of the complexes 1a–1c were calculated theoretically using a DND basis set with the help of Dmol3 program to substantiate the observed local reactivity trend. The catalytic activity of the complexes 1 in carbonylation of methanol, in general, is higher (TON 1189–1456) than the species [Rh(CO)2I2]? (TON 1159). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Novel carbonyl complexes of rhodium(I) and rhodium(III) containing the bidenate nitrogen donor ligand 2,2′-biquinoline (biq) have been prepared; they are of the types RhX(CO)2 biq and RhX(CO)biq (X = Cl, Br, I). Cationic carbonyl and substituted carbonyl complexes of the types [Rh(CO)2biq]ClO4 and [Rh(CO)biqL2]ClO4, where L is tertiary phosphine or arsine have also been isolated. In spite of considerable steric crowding around the nitrogen atoms, 2,2′-biquinoline behaves much like 2,2′-bipyridine in forming carbonyl complexes of rhodium.  相似文献   

20.
The effect of temperature (2–100 K) on the emission spectra and lifetimes of [M(2 = phos)2]ClO4 (M = Rh(I), Ir(I): 2 = phos is cis-1,2-bis-(diphenylphosphino)ethylene) is interpreted with a two-level spin-orbit-split emitting manifold. For [Ir(2 = phos)2]ClO4, Δ? = 143cm?1, τ(lower) = 999μs, and τ(higher) = 1.54 μs. For the rhodium species, Δ? = 35 cm?1, τ(lower) = 5920 μs, and τ(higher) = 20.3 μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号