首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
A structurally diverse range of lipophilic, cationic η6‐arene η5‐cyclopentadienyl (η5‐Cp*) full‐sandwich complexes of ruthenium(II) have been prepared and structurally characterized by Fourier‐transform IR and NMR spectroscopy, electrospray mass spectrometry, and elemental microanalyses. Computational experiments incorporating the Hartree–Fock theory and the second‐order Møller–Plesset perturbation theory predict each complex to possess a uniform δ+ electrostatic potential, with the cationic charge of the [RuCp*]+ moiety completely delocalizing throughout the molecular structure of each metallocene. In vitro cytotoxicity studies demonstrate these delocalized lipophilic cations to be potent growth inhibitors of eleven unique tumorigenic cell lines, while exhibiting significantly lower levels of toxicity towards both a normal human fibroblast and a mouse macrophage cell line. Single‐crystal X‐ray structural determinations are additionally reported for five complexes, [Ru(η6‐C6H5(CH2)2CH3)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C6H5CO2CH2CH3)(η5‐C5(CH3)5)]BF4, [Ru(η6‐C10H8)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C14H10)(η5‐C5(CH3)5)]BPh4, and [Ru(η6‐C16H10)(η5‐C5(CH3)5)]BPh4.  相似文献   

2.
The reactions of [Co(η-C5H5)(L)I2] with Na[S2CNR2] (R = alkyl or phenyl) give [Co(η-C5H5)(I)(S2CNR2)] (I) when L = CO and [Co(η-C5H5)(L)(S2CNR2)]I (II) when L is a tertiary phosphine, phosphite or stibine, or organo-isocyanide ligand. In similar reactions [Co(η-C5H5)(CO)(C3F7)I] gives [Co(η-C5H5)(C3F7)(S2CNMe2)] and [Mn(η-MeC5H4)(CO)2(NO)]PF6 forms [Mn(η-MeC5H4)(NO)(S2CNR2)]. The iodide ligands in I may be displaced by L, to give II, or by other ligands such as [CN]?, [NCS]?, H2O or pyridine whilst SnCl2 converts it to SnCl2I. The iodide counter-anion in II may be replaced by others to give [BPh4]?, [Co(CO)4]? or [NO3]? salts. However [CN]? acts differently and displaces (PhO)3P from [Co(η-C5H5){P(OPh)3}(S2CNMe)]I to give [Co(η-C5H5)(CN)(S2CNMe2)] which may be alkylated reversibly by MeI and irreversibly by MeSO3F to [Co(η-C5H5)(CNMe)(S2CNMe2)]+ salts. Conductivity measurements suggest that solutions of I in donor solvents are partially ionized with the formation of [Co(η-C5H5)(solvent)(S2CNR2)]+ I? species. The IR and 1H NMR spectra of the various complexes are reported. They are consistent with pseudo-octahedral “pianostool” molecular structures in which the bidentate dithiocarbamate ligands are coordinated to the metal atoms through both sulphur atoms.  相似文献   

3.
Reactions of PdRR′(η1-dppm)2 (R = R′= C6F5 or C6Cl5; R = C6F5, R′= Cl; dppm = Ph2PCH2PPh2) with the gold derivatives ClAu(tht), C6F5Au(tht), (C6F5)3Au(tht) or O3ClOAuPPh3 (tht = tetrahydrothiophen) in appropriate ratios yield the bi- or tri-nuclear complexes PdRR′(dppm)2AuCl, PdRR′(dppm)2Au(C6F5); PdRR′(dppm)2Au(C6F5)3; PdRR′(dppmAuCl)2; PdRR′(dppmAuC6F5)2; PdRR′[dppmAu(C6F5)3]2, [PdRR′(dppm)2Au]X (X = ClO4 or BPh4); [PPh3Au(dppm)Pd(C6F5)2(dppm)AuCl]ClO4 or [PPh3 Au(dppm)Pd(C6F5)2(dppm)Au(C6F5)3]ClO4. The structure of trans-Pd(C6F5)2[dppmAu(C6F5)]2 has been determined by X-ray diffraction.  相似文献   

4.
From suitable perhalophenyl derivatives of palladium(II), viz.: Pd(C6F5)2-(SC4H8)2, [Pd(μ-X′) (C6X5)2]2(NBu4)2, [Pd(μ-Cl)(C6X5)(SC4H8)]2 (X = F, Cl, X′ = Cl, Br), new complexes of various types have been prepared, viz.: trans-Pd(C6F5)2(Y)2, Pd(C6X5)2(Y), PdCl(C6X5)(Y) (X = F, Cl). The neutral ligand Y is a keto-stabilized phosphorus ylide of the type Ph2P(CH2)nPPh2CHC(O)R (n = 1, R = CH3, C6H5; n = 2, R = C6H5) acting in a terminal monodentate P-donor or a bidentate chelate P,C-donor mode. The reaction of PdCl(C6F5)(Y) complexes with HCl leads to the corresponding PdCl2(C6F5)(YH) complexes in which the phosphonium cation [YH]+ behaves as monodentate P-donor at its phosphinic end.IR and 31P NMR spectroscopy were used to decide the coordination mode of the ligands and, in some cases, to reveal the presence of two isomers.  相似文献   

5.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

6.
The complexes (η-C5Me5)2Rh2(μ-CO) {μ-η22-C(O)CRCR} are obtained from reactions between (η-C5Me5)2Rh2(CO)2 and the alkynes RCCR (R  CF3, CO2Me, or Ph) at 25°C. The molecular geometry of the complex with R  CF3 has been established by X-ray diffraction; the bridging 'ene-one' unit adopts a μ-η22 conformation. Other complexes isolated from these reactions include (η-C5Me5)Rh(C6R6) (R  CF3, CO2Me), (η-C5Me)2Rh2(C4R4) (R  CO2Me) and (η-C5Me5)2Rh2(CO2C2R2) (R  Ph). The reaction between (η-C5Me5)2Rh2(CO)2 and C6F5CCC6F5 gives (η-C5Me5)2Rh2(CO)2(C6F5C2C6F5). Mononuclear complexes such as (η-C5Me5)Co(C4R4CO) are the major products isolated from reactions between (η-C5Me5)2CO2(CO)2 and alkynes at 25°C.  相似文献   

7.
Molecular and Crystal Structure of Bis[chloro(μ‐phenylimido)(η5‐pentamethylcyclopentadienyl)tantalum(IV)](Ta–Ta), [{TaCl(μ‐NPh)Cp*}2] Despite the steric hindrance of the central atom in [TaCl2(NPh)Cp*] (Ph = C6H5, Cp* = η5‐C5(CH3)5), caused by the Cp* ligand, the imido‐ligand takes a change in bond structure when this educt is reduced to the binuclear complex [{TaCl(μ‐NPh)Cp*}2] in which tantalum is stabilized in the unusual oxidation state +4.  相似文献   

8.
The methylidene complex [(η-C5H5)Re(NO)(PPh3)(CH2)]+PF6?(I) yields kinetically labile sulfonium salts when treated with CH3SCH3, CH3SCH2C6H5, and (η-C5H5)Re(NO)(PPh3)(CH2SCH3) (V);the binuclear adduct formed in the latter case, [(η-C5H5)Re(NO)(PPh3)CH2]2S+CH3 (VI), is substantially more stable than the others and undergoes hydride transfer disproportionation to [(η-C5H5)Re(NO)(PPh3)(CHSCH3)]+PF6?(VII) and (η-C5H5)Re(NO)(PPh3)(CH3) (VIII) when heated.  相似文献   

9.
Chloride abstraction from [{M(η3 --- C3H5)Cl}n] (M = Pt, n = 4 or M = Pd, n = 2) by (NBu4)2[cis-Pt(C6F5)2(CCSiMe3)2] (1) gives rise to novel homo- and hetero-dinuclear zwitterionic derivatives (NBu4) [{cis-Pt(C6F5)2(CCSiMe3)2}M(η3-C3H5)] (M = Pt 2; M = Pd 3) which are formed by a M(η3-allyl)+ unit attached to both alkynyl ligands of the {cis-Pt(C6F5)2(CCSiMe3)2}2− fragment. The structure of 3 has been established by X-ray diffraction.  相似文献   

10.
The interaction of binuclear cadmium dialkyldithiocarbamates [Cd2(S2CNR2)4] with solutions of AuCl3 in 2M HCl gives polynuclear gold(III) complexes ([Au(S2CNR2)2][AuCl4]) n , where R = C4H9 (I) and R2 = (CH2)5 (II). The structures of the synthesized compounds solved by X-ray diffraction analysis are char-acterized by a complicated organization at the supramolecular level. The structures are based on polymer chains (I) and layers (II) involving isomeric cations [Au(S2CNR2)2]+ and anions [AuCl4]. The thermal behavior of the synthesized complexes is studied by simultaneous thermal analysis including thermogravimetry and differential scanning calorimetry. The final product of the thermal transformations of the studied complexes is shown to be reduced metallic gold.  相似文献   

11.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

12.
Reaction of [AuIII(C6F5)3(tht)] with RaaiR′ in dichloromethane medium leads to [AuIII(C6F5)3 (RaaiR′)] [RaaiR′=p-R-C6H4-N=N-C3H2-NN-l-R′, (1-3), R = H (a), Me (b), Cl (c) and R′= Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The nine new complexes are characterised by ES/MS as well as FAB, IR and multinuclear NMR (1H,13C,19F) spectroscopic studies. In addition to dimensional NMR studies as1H,1H COSY and1H13C HMQC permit complete assignment of the complexes in the solution phase.  相似文献   

13.
The reaction of the organometallic diarsene complex [Cp2Mo2(CO)4(μ,η2-As2)] ( B ) (Cp = C5H5) with Ag[FAl{OC6F10(C6F5)}3] (Ag[FAl]) and Ag[Al{OC(CF3)3}4] (Ag[TEF]), respectively, yields three unprecedented supramolecular assemblies [(η2- B )4Ag2][FAl]2 ( 4 ), [(μ,η12- B )32- B )2Ag3][TEF]3 ( 5 ) and [(μ,η12- B )4Ag3][TEF]3 ( 6 ). These products are only composed of the complexes B and AgI. Moreover, compounds 5 and 6 are the only supramolecular assemblies featuring B as a linking unit, and the first examples of [AgI]3 units stabilized by organometallic bichelating ligands. According to DFT calculations, complex B coordinates to metal centers through both the As lone pair and the As−As σ-bond thus showing this unique feature of this diarsene ligand.  相似文献   

14.
The ability of [PtX2(Me2phen)] (Me2phen = 2,9-dimethyl-1,10-phenanthroline, X = Cl, Br, I) to act as olefin scavengers, easily giving stable trigonal bipyramidal five-coordinated platinum species [PtX2(Me2phen)(η2-olefin)], has been checked toward [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)], a cyclopentadienyl complex containing an olefinic function introduced by ring methyl activation in the pentamethylcyclopentadienyl iridium(III) complex [(C5Me5)Ir(Me)(CO)(Ph)]. The reaction of [PtI2(Me2phen)] with [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)] results in the formation of the heterometallic binuclear complex [PtI2(Me2phen){(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)}] which is stable and has been completely characterized by elemental analysis, 1H, 13C, and 195Pt NMR spectroscopy.  相似文献   

15.
In contrast to ruthenocene [Ru(η5‐C5H5)2] and dimethylruthenocene [Ru(η5‐C5H4Me)2] ( 7 ), chemical oxidation of highly strained, ring‐tilted [2]ruthenocenophane [Ru(η5‐C5H4)2(CH2)2] ( 5 ) and slightly strained [3]ruthenocenophane [Ru(η5‐C5H4)2(CH2)3] ( 6 ) with cationic oxidants containing the non‐coordinating [B(C6F5)4]? anion was found to afford stable and isolable metal?metal bonded dicationic dimer salts [Ru(η5‐C5H4)2(CH2)2]2[B(C6F5)4]2 ( 8 ) and [Ru(η5‐C5H4)2(CH2)3]2[B(C6F5)4]2 ( 17 ), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting Ru?Ru bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the Ru?Ru bond in 8 was achieved through reaction with the radical source [(CH3)2NC(S)S?SC(S)N(CH3)2] (thiram), affording unusual dimer [(CH3)2NCS2Ru(η5‐C5H4)(η3‐C5H4)C2H4]2[B(C6F5)4]2 ( 9 ) through a haptotropic η5–η3 ring‐slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6H5ERu(η5‐C5H4)2C2H4][B(C6F5)4] [E=S ( 15 ) or Se ( 16 )] were synthesized through reaction of 8 with C6H5E?EC6H5 (E=S or Se).  相似文献   

16.
The reaction of [Cp2Mo2(CO)4(μ,η2:2-E2)] ( A : E=P, B : E=As, Cp=C5H5) with the WCA-containing CuI salts ([Cu(CH3CN)4][Al{OC(CF3)3}4] (CuTEF, C ), [Cu(CH3CN)4][BF4] ( D ) and [Cu(CH3CN)3.5][FAl{OC6F10(C6F5)}3] (CuFAl, E )) affords seven unprecedented coordination compounds. Depending on the E2 ligand complex, the counter anion of the copper salt and the stoichiometry, four dinuclear copper dimers and three trinuclear copper compounds are accessible. The latter complexes reveal first linear Cu3 arrays linked by E2 units (E=P, As) coordinated in an η2:1:1 coordination mode. All compounds were characterized by X-ray crystallography, NMR and IR spectroscopy, mass spectrometry and elemental analysis. To define the nature of the Cu⋅⋅⋅Cu⋅⋅⋅Cu interactions, DFT calculations were performed.  相似文献   

17.
Thallium [1-(p-tolylimino)-2-methylpropyl]cyclopentadienide, Tl[C5H4C(=NC6H4CH3)CH(CH3)2], was prepared and treatment of the salt with [{PdCl2(PREt2)}2] (R = Ph and Et) yielded mononuclear palladium(II) complexes, [Pd{η5-C5H4C(=NC6H4CH3)CH(CH3)2}Cl(PREt2)], with an imidoyl-substituted η5-cyclopentadienyl group. In addition, [Pd(η5-C5H4-COY)Cl(PPhEt2)] (Y = CH3 and OCH3) complexes were obtained from the sodium salts of their substituted cyclopentadienyl groups. These new compounds were characterized by means of 1H and 13C NMR and IR spectroscopy.  相似文献   

18.
Reacting stoichiometric amounts of 1‐(diphenylphosphino)ferrocene­carboxylic acid and [Ti(η5‐C5HMe4)22‐Me3SiC[triple‐bond]CSiMe3)] produced the title carboxyl­atotitanocene complex, [{μ‐1κ2O,O′:2(η5)‐C5H4CO2}{2(η5)‐C5H4P(C6H5)2}{1(η5)‐C5H(CH3)4}2FeIITiIII] or [FeTi(C9H13)2(C6H4O2)(C17H14P)]. The angle subtended by the Ti/O/O′ plane, where O and O′ are the donor atoms of the κ2‐carboxy­late group, and the plane of the carboxyl‐substituted ferrocene cyclo­penta­dienyl is 24.93 (6)°.  相似文献   

19.
CO2, COS, and SCNPh react under very mild conditions with the copper(I)-tetrahydroborate complexes [(PR3)2Cu(η2-BH4)] (R = Ph, Cy); CO2 and COS give the complexes [(PR3)2Cu(η2-O2CH)] and [(PR3)2Cu(η2-OSCH)] respectively, whereas SCNPh gives the η2-dithiocarbamate complexes [(PR3)2Cu-(η2-S2CNHPh)]. Addition of PPh3 under CO2 to solutions of [(PPh3)2Cu-(η2-BH4)] gives [(PPh3)3Cu(η1-O2CH)] while addition of PPh3 and NBu4ClO4 under CO2 gives [(PPh3)3Cu(η-O2CH)Cu(PPh3)3] ClO4.  相似文献   

20.
Half-sandwich dibenzyl complexes of scandium have been prepared by stepwise treatment of scandium trichloride with lithium derivatives of silyl-functionalized tetramethylcyclopentadienes (C5Me4H)SiMe2R (R = Me, Ph) and benzyl magnesium chloride. The resulting complexes [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] and [Sc(η5-C5Me4SiMe2Ph)(CH2Ph)2(1,4-dioxane)] show structure related to that of the corresponding bis(trimethylsilylmethyl) compounds [Sc(η5-C5Me4SiMe2R)(CH2SiMe3)2(THF)]. The four-coordinate complexes display η1-coordinated benzyl ligands without significant interaction of the ipso-carbon of the phenyl moiety. Conversion of [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] into the cationic species by treatment with triphenylborane in THF led to the formation of a stable charge separated complex [Sc(η5-C5Me4SiMe3)(CH2Ph)(THF)x][BPh3(CH2Ph)]. Benzyl cation formed using [Ph3C][B(C6F5)4] in toluene resulted in a moderately active syndiospecific styrene polymerization catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号