首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orbital populations of the minority-spin Fe(2+) electron in NdBaFe(2)O(5) are extracted from electric and magnetic hyperfine parameters of (57)Fe M?ssbauer spectra across the temperature interval where charge ordering of the valence state 2.5?+ of iron occurs. The previously used approach that assigns the minority-spin population to a single lowest-energy d orbital is expanded to three orbitals by setting up a system of equations in terms of the Fe(2+)/Fe(3+) balance from isomer shift, a point-charge model for the valence and ligand contributions to the electric-field gradient, a point-dipole model for the dipolar contribution and an iterative scheme for small orbital contributions to the internal magnetic field. This allows us to model the hyperfine fields (electric and magnetic) in the intermediate temperature range of partial charge ordering between T(V )?≈?210?K and T(p)?≈?285?K, for which the one-orbital model was insufficient.  相似文献   

2.
The spectra of 57Fe in monoclinic Fe2TiO5 were interpreted as hyperfine patterns belonging to two nonidentical iron sites. They confirm that Fe3+ ions are distributed over 4a and 8f sites. The spectra of mosaic-like crystals indicate that all iron spins lie in the (100) plane. The temperature dependences of hf parameters gave a magnetic ordering temperature 350 K, average saturation effective field 505 kG and Debye temperature 430 K. Above 1500 K, monoclinic Fe2TiO5 transformed into the stable pseudobrookite form.  相似文献   

3.
YMn2 compound doped with57Fe was investigated using57Fe Mössbauer resonance in the temperature range 4.2–400 K. The magnetically split spectra were analyzed assuming two magnetically nonequivalent Fe sites with relative population dependent on iron concentration. In the transition temperature region a coexistence of the magnetic and nonmagnetic components was observed in the temperature span of about 50 K. A thermal hysteresis (of about 25 K) of the magnetic component confirms the first-order type magnetic transition. Temperature dependence of the hyperfine field of the magnetic component could be interpreted in terms of spin-fluctuation theory.  相似文献   

4.
High-purity Fe powder was mechanically milled under argon at ambient temperature using an SPEX 8000 mill. The local atomic and magnetic structure was studied using57Co/Fe Mössbauer and111In/Cd perturbed angular correlations (PAC) spectroscopies. After 32 hours of milling, X-ray diffraction revealed effective grain diameters of 18 nm and energy-dispersive X-ray analysis indicated a Cr impurity concentration of 5%, presumably introduced by mechanical attrition of steel ball bearings used for milling. In addition to a spectral component very similar to bulk iron metal, the Mössbauer spectra exhibited hyperfine field shifts attributed to the Cr impurities. PAC spectra on Fe milled for 5 h, with no contamination, exhibited two components: (1) A slightly broadened magnetic interaction attributed to interior, defect-free sites of In/Cd probes with a mean hyperfine field slightly greater than in macroscopic grains. The defect-free site fraction grew appreciably during milling, even though In is essentially insoluble in Fe. (2) An indistinct signal due to mixed magnetic and quadrupole interactions attributed to probes at surface or other defect sites.  相似文献   

5.
黄志高  林肇华 《物理学报》1989,38(5):834-839
本文研究了非晶态合金Fe81-xNixSi3.5B13.5C2(x=5,10,15,20,25,30,35)及坡莫合金Fe50Ni50在室温和外加磁场下的穆斯堡尔谱,用拟谱方法获得了超精细相互作用的参量及超精细场分布P(H).实验结果表明,非晶态Fe-Ni基合金存在两种磁性铁原子且有类因瓦特性,在x=15左右存在异常现象.文中提出了外加磁场和低温的外界条 关键词:  相似文献   

6.
The Mössbauer spectrum of BaFe4Sn2O11 has been recorded for both 57Fe and 119Sn isotopes at a variety of temperatures. In the paramagnetic state the 57Fe spectra are interpreted in terms of three iron environments. Magnetic ordering begins at 77 K and is virtually complete by 4.2 K to give an average magnetic hyperfine field of 504 kG. The 119Sn spectra also reflect the magnetic ordering and a magnetic hyperfine field of 45 kG is transferred to the tin nuclei.  相似文献   

7.
YIG films, substituted with Bi, Ti, Ga and La, were grown on a (111) plane of Gd3Ga5O12 or (Gd, Ca)3(Ga, Mg, Zr)5O12 by a liquid phase epitaxial method. With the increase of the concentration of Bi atoms, which are substituted at 24c sites of YIG, the magnetic hyperfine fields at 16a and 24d Fe sites increased and the direction of magnetic moments changed from parallel to 45° to the (111) plane. With the increase of Ga concentration, the hyperfine fields at 16a and 24d Fe sites decreased. The hyperfine interaction and the substitution effect of YIG films are discussed.  相似文献   

8.
I. Ahmad  M. J. Akhtar  M. Siddique 《中国物理 B》2016,25(2):28101-028101
Nd Fe_(1-x)Ni_xO_3(0.1 ≤ x ≤ 0.7) orthoferrites are synthesized by solid state reaction method, and the structural properties of these materials are investigated by employing x-ray diffraction(XRD), scanning electron microscopy(SEM) and M o¨ssbauer spectroscopy. The orthorhombic structure is observed in all systems; however, with the increase in Ni doping,the increase in tolerance factor and the decrease in the cell volume are observed. Orthorhombic distortion decreases with Ni content increasing up to 50%, while above 50% Ni doping it increases. SEM examination indicates the increases in grain size and intermixing of grains with increase in Ni concentration. Comparison between bulk and theoretical densities shows that in each of all samples porosity is less than 2%. M?ssbauer spectroscopic investigations are performed to explain local structure, Fe oxidation states and collapse of the magnetic ordering. In these samples the Fe oxidation state remains+3 and there is no considerable increase in hole states observed; however due to mismatch of the ionic radii between Fe~(3+) and Ni~(3+), octahedral distortions, sagging and distribution of hyperfine parameters increase with increase in Ni concentration. The major factors behind the collapse of magnetic ordering in the Ni-doped systems are the weakening of the super-exchange interactions, decrease in the Neel temperature, increase in spin–spin relaxation frequency and high spin to low spin transition.  相似文献   

9.
The structural and magnetic properties of Ho substituted BiFeO3 (BHFO) have been investigated using 57Fe Mössbauer spectroscopy and X-Ray diffraction (XRD) as a function of temperature. The Mössbauer spectrum obtained at room temperature for the as-synthesized BHFO sample exhibits broadened features due to the hyperfine field distributions related to the local variation of the neighbourhood of Fe and the magnetic hyperfine splitting patterns are indicative of magnetic ordering, mostly probably screwed or slightly antiferromagnetic. The spectrum was fitted with two superimposed asymmetric sextets, with similar hyperfine magnetic fields of Bhf1 = 48.0(1) T and Bhf2 = 49.0(1) T, corresponding to rhombohedral BFO. The hyperfine fields of the magnetic components decreased systematically with increasing temperature to a ‘field distribution’ just below the Néel temperature, TN ~ 600 K. At temperatures above 600 K, the spectral line associated with the Bi25FeO40 impurity phase dominates the spectra. This phase is confirmed by XRD measurements. From the temperature dependence of the site populations of the spectral components an average Debye temperature of θ D = 240(80) K has been estimated.  相似文献   

10.
Data on the temperature dependence of the hyperfine fields on Fe sites in Fe3Si and FeRh (35 at.%) are presented. The sublattice magnetizations are practically independent of the number of magnetic neighbours at each site, suggesting that the molecular field approach is inapplicable to metallic systems.  相似文献   

11.
A ternary system consisting of Ru, Fe and Si is identified in which the hyperfine field at Fe is seen to evolve at a characteristic temperature, T1, far below the magnetic ordering temperature, Tm. It is speculated that the magnetic ordering at Tm is itinerant and T1 corresponds to the localization of the majority spin electrons at the Fe atoms.  相似文献   

12.
The Mössbauer spectra of (Fe, Co)S1 + x were recorded at room temperature and 4.2 K for samples of varying composition to study the magnetic behaviour of the solid solutions. The Mössbauer spectra are split magnetically at iron concentrations above 16% Fe. For samples with less than 16%Fe, the Mössbauer spectra show no evidence of magnetic splitting down to 4.2 K. The room temperature centre shift data appear to vary continuously with composition and the hyperfine magnetic field decreases with decreasing Fe2+ concentration. A Mössbauer spectrum of 57Fe:CoS at 4.2 K in an external field of 25 kOe showed no evidence of magnetic splitting beyond that caused by the applied field, indicating a net zero internal field.A high spin to low spin transition in Fe2+ is ruled out as being responsible for the observed magnetic behaviour on the basis of the centre shift data. The Mössbauer data are interpreted to indicate a substantial increase in electron delocalization towards the ligands as the 〈M-S〉 distance decreases with decreasing Fe2+concentration. This causes a reduction in the magnitude of the internal magnetic field contributions as well as a decrease of shielding of the nucleus, giving rise to the observed Mössbauer parameters.The Mössbauer spectrum of 57Fe:CoS at room temperature is compared with the spectrum of FeS above the 6.7 GPa phase transition at room temperature. The similarities of the centre shift and the 〈M-S〉 distance in the two phases indicate that covalency may also be responsible for the observed high pressure behaviour of FeS, and not the presence of Fe3+ as was originally suggested.  相似文献   

13.
M?ssbauer spectra obtained after implantation of 57Fe into highly oriented pyrolytic graphite (HOPG) show a combined magnetic and quadrupole interaction with a magnetic hyperfine field Bhf = 32.6 T at 14 K. Though magnetic effects in nominally diamagnetic HOPG have been reported recently, no experiment has previously shown the existence of magnetism at the atomic scale. The results suggest that magnetic ordering occurs by coupling of the Fe magnetic moment to structural and/or electronic magnetic defects induced by the probe atoms' implantation damage.  相似文献   

14.
Fine particles of -FeO(OH) were prepared using the56Fe isotope and the surfaces of the particles were coated with extremely thin57Fe(III) layers. Mössbauer results show that the Fe(III) ions in the top surface layer are involved in the magnetic order and occupy two kinds of surface sites. Both of the two exchange field at surface sites, estimated from the temperature dependences of the hyperfine fields, are smaller than the bulk value. The decrease of exchange fields at the surface sites corresponds to the reduced number of neighboring magnetic ions at each site.  相似文献   

15.
Antiferromagnetic Fe–30Mn–Si alloys containing 2.0–8.7 at.% Si are known to exhibit several attractive physical properties at Néel temperatures which render them candidate materials for functional alloys applications. The Néel transitions and anomalous transport phenomena have been studied extensively in a wide temperature range. In the present work, the hyperfine interactions are studied by Mössbauer spectroscopy measured at temperatures 95–623 K. It is found that the Mössbauer spectra are singlets at temperatures above the Néel temperature and doublets below the Néel temperature. The alloys have a small hyperfine field around the Fe nuclei below the Néel temperature and the hyperfine field increases linearly with increasing silicon concentration. This can be explained by the presence of a localised net magnetic moment on the Fe nuclei which is induced by the silicon atoms. A decrease in isomer shift with increasing silicon concentration is observed and this can be accounted for by the change in the occupation of the Fe 3d shell. There is a small quadrupole splitting, it increases with increasing silicon concentration, and is consistent with the lattice shrinking and magnetostriction.  相似文献   

16.
The temperature dependence of the ferric and ferrous hyperfine fields in natural samples of strunzite, ferristrunzite and ferrostrunzite is determined by Mössbauer spectroscopy between 4.2 K and their magnetic transition temperatures (T N), i.e. 50.5±0.5 K, 43.0±0.5 K and 44.0±0.5 K respectively, which are determined by Mössbauer thermoscanning. Two dominating magnetically split ferric subspectra were consistently present in all of the samples and are related to the Fe(1) and Fe(2) sites in the crystallographic structure, but an unambiguously assignment to a specific site is not possible. The difference between the corresponding hyperfine fields is very small. In the strunzite sample these fields are well defined and rather weakly dependent of temperature. In the other samples the corresponding hyperfine fields are more distributed especially at higher temperatures (below T N). The relative contribution in the spectra of the third magnetic ferric component differs strongly between the samples and is assigned to ferric ions at the Mn site. At the lowest temperatures applied, its hyperfine field exceeds all other field values, but it decreases rather rapidly with increasing temperature, in so far that the corresponding spectral lines make a crossover with the lines of the other ferric subspectra. The magnetically split spectra of ferrostrunzite consist additionally of a ferrous magnetic component, which could be successfully analysed by introducing two magnetically split ferrous subspectra, which strongly overlap with each other but also with the ferric components. At higher temperatures in the magnetic region all subspectra overlap more and in the case of ferri- and ferrostrunzite the ferric hyperfine fields were distributed over a wider range.  相似文献   

17.
The magnetic moments and hyperfine fields at Fe sites in 3d-transition metals are calculated using the first principle discrete variational method in local density approximation. Although a large positive moment is retained at each Fe site, the hyperfine fields varied from large negative to large positive values. It is concluded that the absence of Mössbauer magnetic splitting does not necessarily imply the absence of local magnetic moments.  相似文献   

18.
Mössbauer effect of Fe57 embedded as very dilute substitutional impurities in Pd2MnSn was studied. The impurities are seen to replace the three elements in the alloy. Although the Curie temperature of the alloy is 189K, well below the room temperature, the Mössbauer spectrum recorded at room temperature consisted of two distinct 6-finger magnetic hyperfine spectra and a single unsplit line. One of the 6-finger patterns which corresponds to an internal magnetic field ofH int=?375 kOe is inferred to arise due to local magnetic coupling of the localized magnetic moments of Fe impurities at the Pd sites with those of the 4 Mn first nearest neighbours of the Fe impurities. The other 6-finger pattern which corresponds to an internal magnetic field ofH int=?335 kOe is inferred to arise due to the local magnetic coupling of the localized magnetic moments of the Fe impurities at the Sn sites with those of the 6 Mn second nearest neighboours of the Fe impurities. The difference in the internal magnetic fields observed at the Pd and Sn sites in the alloy could be understood qualitatively, on the basis of RKKY theory, as arising due to the different conduction electron polarization contributions to the net internal magnetic field at the Fe impurity sites. The results of the measurements suggest that the localized magnetic moments of Fe57 impurities at Pd and Sn sites are antiferromagnetically coupled with the moments of their neighbouring Mn atoms.  相似文献   

19.
57Fe M?ssbauer spectra have been obtained at room temperature for (NdDy)TiFe11, and at 11 K and room temperature for the corresponding nitrides (NdDy)TiFe11Ny. The magnetic behaviors of Fe atoms at different sites have been studied. We have found a larger increase of the hyperfine fields upon nitrogenation due to the higher nitrogen content in these compounds and got a bigger enhancement of the isomer shift in 8j site because of the nearest nitrogen environment.  相似文献   

20.
The 57Fe Mössbauer spectra are recorded in Nd2(Fe1-xCox)14B at x = 0.25 in the temperature range 100 to 780 K. Tc the Curie temperature, hf, the magnetic hyperfine field average over various Fe nuclei of the unit cell and its temperature coefficient α(hf) in the vicinity of 300 K are found to be 760(5) K, 34.0(3) T and -0.08(1)% K-1, respectively. The magnetic moment at Fe atoms is estimated to increase up to 12% as a result of the partial substitution by Co atoms. The dependence of the fields upon temperature is observed to be least at the j2 and k2 sites as compared to the other sites of Fe. The results for the variation of Bhf at all of the six sites of Fe with respect to temperature are given. A site preference of Fe atoms for the j2 sites is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号