首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ZnAl2O4:Tb phosphor was prepared by combustion synthesis. ZnAl2O4:Tb exhibits three thermally stimulated luminescence (TSL) peaks around 150, 275 and 350 °C. ZnAl2O4:Tb exhibits optically stimulated luminescence (OSL) when stimulated with 470 nm light.Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in ZnAl2O4:Tb. Two defect centres are identified in irradiated ZnAl2O4:Tb phosphor and these centres are assigned to V and F+ centres. V centre appears to correlate with the 150 °C TSL peak, while F+ centre could not be associated with the observed TSL peaks.  相似文献   

2.
The Er3+–Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+–Yb3+ doped/co-doped phosphor powder has been recorded in the UV–Vis–NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O? ion and F+ centres. O? ion (hole centre) appears to correlate with the low temperature TSL peak at 210 °C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 °C.  相似文献   

3.
Mg2TiO4:Cr3+ annealed at 560°C shows luminescence properties which differ considerably from those of the unannealed phosphor used so far. In both cases the regular Cr3+ ions only absorb the irradiated energy transferring it radiationless to the real luminescence centres, but the annealed phosphor reveals a new spectrum consisting of a few sharp lines. The radiance of the single lines can be influenced by powdering, which in connection with the annealing effect shows that the centres of both types of phosphors consist of clusters of lattice defects and octahedrally coordinated Cr3+ ions. These clusters or associates form themselves by thermal diffusion during the annealing process. Furthermore criteria have been found showing that the R lines do not come from only one but from two Cr3+ ions situated in non-equivalent lattice sites.  相似文献   

4.
Measurements of the emission and excitation spectra of powdered Mg2TiO4:Mn4+ phosphors reveal that single Mn4+ ions are not responsible for the luminescence — as assumed till now — but so-called N centres. These centres are excited either by direct UV absorption or by radiationless energy transfer from the excited 2E state of the Mn4+ ions to the N centres. The Mn4+ ions absorb the energy corresponding to the transition 4A2g2E which is used for the excitation of the N centres, but do not emit the corresponding lines. The observed different luminescence spectra (sharp lines or broad bands) depend on the annealing conditions and indicate that the N centres consist of Mn4+ ions associated with unknown lattice defects. The annealing process does not only form the tetravalent state of the manganese, but creates above all the N1 centres, which emit sharp lines. Two more lines observed at 697.8 nm and 699.4 nm, called Rm lines, are due to a certain amount of MgTiO3:Mn4+ in the phosphor.  相似文献   

5.
The Zn2SiO4:Mn2+ nanophosphors with different particle sizes were synthesized via the hydrothermal method by adjusting the concentrations of surfactant and the hydrothermal temperature. The behavior of the photoluminescence as a function of phosphor particle sizes under vacuum ultraviolet excitation was investigated. Higher critical quenching concentration with decreasing particle size of the Zn2SiO4:Mn2+ nanophosphors was observed. This is ascribed to the hindrance of energy transfer between luminescence centers under vacuum ultraviolet excitation. The prolonged decay time in smaller samples provides further evidence that the energy transfer confinement has an effect on the photoluminescence properties.  相似文献   

6.
SiO2-coated Ca2BO3Cl:Eu2+ phosphors were prepared by the sol–gel method in order to enhance the chemical and thermal stabilities of Ca2BO3Cl:Eu2+ phosphor. The phase structures, microstructures and luminescence properties were studied by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrometer, respectively. The emission intensity of SiO2-coated Ca2BO3Cl:Eu2+ phosphor decreased a little compared to that of the uncoated phosphor. The moisture resistances of the phosphors were comparatively examined by the aging treatment experiment in the water, and the thermal stability was studied by the temperature dependent photoluminescence spectra. The results indicated that SiO2 coating on the surface of the phosphor particles improved the moisture-resistance and thermal stability to a large extent.  相似文献   

7.
Zn2SiO4:Mn2+ phosphor films were successfully prepared by a novel combustion chemical vapor deposition (CCVD) method. In the CCVD process, a flammable solution, containing precursor materials, is atomized and sprayed through a specially designed nozzle and ignited to form a combustion flame. This enables crystallized films to be directly deposited onto a substrate in open-atmosphere with no post deposition heat treatment. SEM images indicated that the film deposited at 1200 °C consisted of densely packed particles with a fine grain size of several 100 nm. Strong Photoluminescence (PL) and cathodoluminescence (CL) intensities were observed with Zn2SiO4:Mn2+ samples deposited at a substrate temperature of 1200 °C exhibiting the best crystallinity and highest luminescence. The optimum doping level for films deposited using CCVD was found to be ∼4 mol% Mn2+ of starting concentration, with a maximum CL luminescence equivalent to 53% of the luminescence measured from a commercial powder phosphor. A relatively fast CL decay with life time about 0.6-0.7 ms was also observed from these films.  相似文献   

8.
2 SiO4:Mn phosphor was evaluated for use in radiation detectors of medical imaging systems. Zn2SiO4:Mn was used in the form of laboratory-prepared fluorescent layers (screens) with coating weights from 18 to 150 mg/cm2. The phosphor was excited to luminescence by low-energy X-raysusing X-raytube voltages ranging from 15 to 50 kVp. The number of emitted optical photons per incident X-rayquantum was thus determined for various X-rayenergies and phosphor coating weights. The optical emission spectrum was also measured and it was used to evaluate the spectral compatibility of Zn2SiO4:Mn with radiographic films, photocathodes and the Si photodiode. Finally, phosphor optical properties were estimated by fitting a theoretical model to experimental data. Results showed that Zn2SiO4:Mn is more efficient for low-energy X-rays. Its intrinsic conversion efficiency was found equal to 0.08, which is comparable to that of actually used phosphors. Zn2SiO4:Mn was also adequately compatible with orthochromatic films and the ES-20 photocathode, thus being appropriate for low-voltage radiography and fluoroscopy. Received: 31 July 1998/Accepted: 3 August 1998  相似文献   

9.
<正>This paper investigates the luminescence characteristics of Eu2+ activated Ca2SiO4,Sr2SiO4 and Ba2SiO4 phosphors. Two emission bands are assigned to the f-d transitions of Eu2+ ions doped into two different cation sites in host lattices,and show different emission colour variation caused by substituting M2+ cations for smaller cations.This behaviour is discussed in terms of two competing factors of the crystal field strength and covalence.These phosphors with maximum excitation of around 370 nm can be applied as a colour-tunable phosphor for light-emitting diodes(LEDs) based on ultraviolet chip/phosphor technology.  相似文献   

10.
Single-phased Sr3B2SiO8:Eu3+ phosphor was prepared by a solid-state method at 1020 °C. The luminescence spectra showed that Sr3B2SiO8:Eu3+ phosphor can be effectively excited by near ultraviolet light (393 nm) and blue light (464 nm). When excited at 393 or 464 nm Sr3B2SiO8:Eu3+ exhibited the main emission peaks at 611 and 620 nm, which resulted from the supersensitive 5D07F2 transition of Eu3+. The luminescence intensity of Sr3B2SiO8:Eu3+ at 611 and 620 nm reached the maximum when the doping content of Eu3+ was 4.5 mol%. Its chromaticity coordinates (0.646, 0.354) were very close to the NTSC standard values (0.67, 0.33). Thus, Sr3B2SiO8:Eu3+ is considered to be an efficient red-emitting phosphor for long-UV InGaN-based light-emitting diodes.  相似文献   

11.
<正>A real high power vacuum ultraviolet light source is applied to the investigation on the vacuum ultraviolet irradiation degradation of BaMgA10O17:Eu2+ phosphor.The degradations of emission intensity and color quality of the sample are clearly observed after irradiation.It reveals that the oxidation of Eu2+ during irradiation is partly responsible for the degradations.The excitation and absorption spectra show that some traps generated during irradiation have negative influence on the luminescence of sample and these traps have been identified as positively charged oxygen vacancies by positron annihilation.The investigations on host emission and decay curve further confirm that these oxygen vacancies are involved in the perturbation of energy transfer from the host to Eu2+ and finally result in the degradation.  相似文献   

12.
The degradation of the cathodoluminescence (CL) intensity of cerium-doped yttrium silicate (Y2SiO5:Ce) phosphor powders was investigated for possible application in low voltage field emission displays (FEDs). Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of commercially available Y2SiO5:Ce phosphor powders. The degradation of the CL intensity for the powders is consistent with a well-known electron-stimulated surface chemical reaction (ESSCR) model. It was shown with XPS and CL that the electron stimulated reaction led to the formation of a luminescent silicon dioxide (SiO2) layer on the surface of the Y2SiO5:Ce phosphor powder. XPS also indicated that the Ce concentration in the surface layer increased during the degradation process and the formation of CeO2 and CeH3 were also part of the degradation process. The CL intensity first decreased until about 300 C cm−2 and then increased due to an extra peak arising at a wavelength of 650 nm.  相似文献   

13.
Phosphors of Eu2+-doped BaO-SiO2 compounds composed of a major BaSiO3 phase and a minor Ba2SiO4 phase were synthesized by a solid-state method at 1200°C under CO atmosphere. An enhancement of the photoluminescence of Eu2+ up to 18 times has been achieved by mixing ZnO into the composition. The composition-optimized phosphor emits bright yellow–green luminescence with excitation between 380 and 420 nm, indicating potential of application in AlGaN-based UV-LEDs. Under the similar synthesis and measurement conditions, the emission band of the optimized phosphor is more intense and has stronger red component than that of Ba2SiO4:Eu2+. Our experimental results suggest that the addition of ZnO may retain and stabilize Eu2+ in BaSiO3 crystalline lattice and thus may enhance the 5d-4f luminescence and eliminate Eu3+ 4f-4f transition.  相似文献   

14.
Yb3+ doped phosphor of Gd2O3 (Gd2O3:Yb3+) have been prepared by solid state reaction method. The structure and the particle size have been determined by X-ray powder diffraction measurements. The average particle size of the phosphor is in between 35 and 50 nm. The particle size and structure of the phosphor was further confirmed by TEM analysis. The visible and NIR luminescence spectra were recorded under the 980 nm laser excitation. The visible upconversion luminescence of Yb3+ ion was due to cooperative luminescence and the presence of rare earth impurity ions. The cooperative upconversion and NIR luminescence spectra as a function of Yb3+ ion concentration were measured and the emission intensity variation with Yb3+ ion concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Gd2O3:Yb3+ phosphor with doping level over 5%, while the NIR emission luminescence continuously increases with increasing Yb3+ ion concentration.  相似文献   

15.
The present commercial phosphor Zn2SiO4:Mn2+ requires further improvement because of its long decay time. In this work, the co-doping effects of Ba2+ and Ti4+ upon emission intensity and decay time were investigated. Ba2+ and Ti4+ cations have favorable influences on the photoluminescent properties. When doped with appropriate amount of Ba2+, the intensity of green emission was increased 12% and the decay time was shortened 18%. When doped with appropriate amount of Ti4+, the luminescence intensity was enhanced a little, and the decay time was shortened 14%. Ba2+ and Ti4+ were co-doped in Zn2SiO4:Mn2+ system, the luminescence intensity was enhanced 18%, and the decay time was shortened sharply (about 31%).  相似文献   

16.
We report on a novel luminescent phenomenon in Y2O2S doped with Nd3+. After irradiation by a 261 nm ultraviolet (UV) light into the Y2O2S host lattice, the Nd3+-doped Y2O2S phosphor emits intense blue luminescence in the visible light region. Moreover, this blue luminescence can also be obtained by exciting directly into the Nd3+ energy absorption itself. XRD, photoluminescence, and fluorescence decay curve are used to characterize the synthesized phosphor. The spectroscopic data indicate that all the visible emission peaks are originated from the electrical transitions of Nd3+, and the strong luminescence of the Nd3+ is considered to be due to an efficient energy transfer from the Y2O2S host lattice to the Nd3+ in Y2O2S:Nd3+. The optimum concentration for the luminescence Nd3+ is determined to be 1 mol% of Y3+ in Y2O2S host. The critical energy transfer distance has been calculated by the concentration quenching and the possible luminescent process of this blue luminescence-emitting phosphor is also investigated.  相似文献   

17.
The luminescence of powder samples of the well-known green-emitting Zn2SiO4:Mn and the red-emitting Mg4Ta2O9:Mn phosphor shows a considerable fine structure at 4° K in appropriately prepared samples containing a sufficiently low Mn concentration. For (Zn1-xMnx)2SiO4 (0.0005?x?0.05) two sharp lines were found which are interpreted as due to zero phonon transitions between the 4T1 and 6A1 levels of Mn2+ ions on the two crystallographically different zinc sites. The remaining structure is ascribed to vibronic sidebands. The decay times of the luminescence bands associated with the two sites differ; they are 12 and 15 ms for the high and low energy bands respectively. The experimental results of Vlam are confirmed by our data. In addition some (Zn1-yBey)2SiO4:Mn (0.025? y ?1) samples were investigated. In Mg4Ta2O9:Mn two zero phonon lines could be identified, indicating that in this material Mn2+ is distributed over two inequivalent Mg sites. Most of the phonon replicas were found at intervals of 15 meV. Raman scattering experiments showed that this energy corresponds to one of the lattice vibrations. The decay time of this luminescence band is 1.0 ms.  相似文献   

18.
A novel white-light emitting CaAl2SiO6: Ce3+, Tb3+ phosphor has been prepared by a sol–gel method. X-ray diffractometry and spectrofluorometry were used to characterize structural and optical properties of the samples. The results indicate that the crystal structure of the phosphor is a single phase of CaAl2SiO6. The excitation band of the phosphor covers a wide region from 240 nm to 380 nm. CaAl2SiO6: Ce3+, Tb3+ phosphors show four emission bands: one at 400 nm for Ce3+ and three at 487 nm, 543 nm and 585 nm for Tb3+. With appropriate tuning of Tb3+ content, white light with different hues can be achieved under UV radiation. The energy transfer mechanism from Ce3+ to Tb3+ in CaAl2SiO6 host was demonstrated to be dipole–dipole interaction.  相似文献   

19.
Enhanced green photoluminescence and cathodoluminescence (CL) from Tb3+ ions due to co-doping with Ce3+ ions were observed from SiO2:Ce,Tb powder phosphors prepared by a sol-gel technique. Blue emission from the Ce3+ ions was completely suppressed by Tb co-doping, presumably due to energy transfer from Ce3+ to Tb3+. In addition, the green CL intensity from SiO2:Ce,Tb degraded by ∼50% when the powders were irradiated for 10 h with a 2 keV, 54 mA/cm2 beam of electrons in an ultra-high vacuum chamber containing either 1×10−8 or 1×10−7 Torr O2. Desorption of oxygen from the surface was observed during the decrease of CL intensity. The mechanisms for energy transfer from Ce3+ ions to Tb3+ ions to enhance the green luminescence, and mechanisms for desorption of oxygen from the phosphor surface that would result in decreased CL intensity are discussed.  相似文献   

20.
The photoluminescence properties of a composite material prepared by the introduction of the nanosized phosphor Zn2SiO4:Mn2+ into porous anodic alumina have been investigated. Scanning electron microscopy studies have revealed that Zn2SiO4:Mn2+ particles are uniformly distributed in 70% of the volume of the pore channels. The samples exhibit an intense luminescence in the range of 2.3–3.0 eV, which corresponds to the emission of different types of F centers in alumina. After the formation of Zn2SiO4:Mn2+ nanoparticles in the pores, an intense photoluminescence band is observed at 2.4 eV due to the 4T16A1 electronic transition within the 3d shell of the Mn2+ activator ion. It has been found that the maximum of the photoluminescence of Zn2SiO4:Mn2+ xerogel nanoparticles located in the porous matrix is shifted to higher energies, and the luminescence decay time decreases significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号