首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The popularity of rotational-echo double-resonance (REDOR) NMR arises from its ability to measure weak dipolar couplings and long-range heteronuclear distances accurately. This ability was not anticipated in the first REDOR experiments and resulted from the effectiveness of a simple radiofrequency phase alternation scheme to suppress amplitude and phase distortions in echo trains even after hundreds of pi pulses.  相似文献   

2.
Hyperpolarized (129)Xe can be used as a sensor to indirectly detect NMR spectra of heteronuclei that are neither covalently bound nor necessarily in direct contact with the Xe atoms, but coupled through long-range intermolecular dipole-dipole interactions. To reintroduce long-range dipolar couplings the sample symmetry has to be broken. This can be done either by using an asymmetric sample arrangement, or by breaking the symmetry of the spin magnetization with field gradient pulses. Experiments are performed where only a small fraction of the available (129)Xe magnetization is used for each point, so that a single batch of xenon suffices for the point-by-point acquisition of a heteronuclear NMR spectrum. Examples with (1)H as the analyte nucleus show that these methods have the potential to obtain spectra with a resolution that is high enough to determine homonuclear J couplings. The applicability of this technique with remote detection is discussed.  相似文献   

3.
A recently introduced density matrix picture for dipolar effects in solution NMR (1996,J. Chem. Phys.105,874) gave complete solutions for intermolecular multiple-quantum coherences for single-component samples without scalar couplings. This paper, for the first time, shows that this quantum picture can lead to explicit signal expressions for multicomponent samples of molecules with internal scalar couplings (here assumed to generate a first-order spectrum) and long-range dipolar couplings. Experimental observation of a triplet in the indirectly detected dimension for a heteronuclear CRAZED sequence (13CHCl3sample, ZQ or 2Q coherences) gives clear evidence that the coupling is due to the intermolecular dipolar coupling. We also make comparisons with classical pictures which introduce the dipolar demagnetization field in multicomponent spin systems.  相似文献   

4.
A novel procedure for reconstruction of 2D separated-local-field (SLF) NMR spectra from projections of 1D NMR data is presented. The technique, dubbed SLF projection reconstruction from one-dimensional spectra (SLF-PRODI), is particularly useful for uniaxially oriented membrane protein samples and represents a fast and robust alternative to the popular PISEMA experiment which correlates (1)H-(15)N dipole-dipole couplings with (15)N chemical shifts. The different 1D projections in the SLF-PRODI experiment are obtained from 1D spectra recorded under influence of homonuclear decoupling sequences with different scaling factors for the heteronuclear dipolar couplings. We demonstrate experimentally and numerically that as few as 2-4 1D projections will normally be sufficient to reconstruct a 2D SLF-PRODI spectrum with a quality resembling typical PISEMA spectra, leading to significant reduction of the acquisition time.  相似文献   

5.
A new pulse sequence, long-range CPMG-adjusted heteronuclear single quantum coherence (LR-CAHSQC), is proposed for the determination of long-range JCH coupling constants from a long-range 1H-13C correlation experiment. The long-range heteronuclear coupling constants can be directly extracted from COSY-type antiphase peak patterns. The current approach utilizes CPMG-sequences for polarization transfer, and thus avoids the evolution of homonuclear JHH couplings, which normally may introduce abnormalities into the cross peak pattern. The differences between LR-CAHSQC and normal LR-HSQC are discussed.  相似文献   

6.
Several 13C-1H NMR techniques are derived simplifying the visualisation of enantiomers in chiral ordering solvents. They proceed through various heteronuclear 2D experiments where a bilinear rotation decoupling sequence (BIRD) is inserted in the middle of the t1 evolution period. In this way, the small couplings are refocused while the large couplings are preserved. The methods allow extracting precise values of one-bond carbon-proton residual dipolar couplings for each enantiomer out of unresolved proton-coupled 13C or carbon-coupled 1H spectra. Illustrative examples are analysed and discussed using various pulse sequences.  相似文献   

7.
One-bond heteronuclear and two-bond homonuclear residual dipolar couplings measured at methylene or amine sites can be utilized as long-range constraints in structure determination of molecules as well as to facilitate characterization of local conformation by stereospecific assignment of diastereotopic protons. We present two J-modulated HMQC type experiments to measure the one-bond heteronuclear dipolar coupling contributions of geminal protons individually. In addition two-bond homonuclear residual dipolar couplings between the diastereotopic protons are also obtained.  相似文献   

8.
A pulsed field gradient version of the sensitivity-enhanced 2D HSQC–TOCSY experiment is proposed for measurement of long-range heteronuclear coupling constants. The coupling constants are obtained by computer-aided analysis of mixed-phase multiplets with and without the heteronuclear splitting. Generation of pure phase data is not required. Since large1JXHandJHHcouplings are used for coherence transfer, smallnJXHcan be measured accurately, which could be difficult to obtain from purely heteronuclear polarization transfer experiments.  相似文献   

9.
一种新的DENUDATINE型C20二萜生物碱结构的NMR研究   总被引:1,自引:0,他引:1  
从内蒙西伯利亚乌头中分离得一个新的C20二萜生物碱,采用选择性远程DEPT,同核和异核二维NMR技术相结合进行了研究,其结构确定为Lepenine的C-11基向立体异构体,定名为11a-hydroxylapenine.结果表明,选择性远程DEPTNMR技术对于连接这类化合物中被季碳和杂原子分割的NMR自旋体系,测定基本骨架和确定信号归属都有独到之处.  相似文献   

10.
Magic-angle spinning NMR spectra of samples containing dilute spin-1/2 pairs display broadenings or splittings when a rotational resonance condition is satisfied, meaning that a small integer multiple of the spinning frequency matches the difference in the two isotropic shift frequencies. We show experimental rotational resonance NMR spectra of a 13C2-labeled retinal which are in qualitative disagreement with existing theory. We propose an explanation of these anomalous rotational spectra involving residual heteronuclear couplings between the 13C nuclei and the neighboring 1H nuclei. These couplings strongly influence the rotational resonance 13C spectrum, despite the presence of a strong radiofrequency decoupling field at the 1H Larmor frequency. We model the residual heteronuclear couplings by differential transverse relaxation of the 13C single-quantum coherences. We present a superoperator theory of the phenomenon and describe a numerical algorithm for rapid Liouville space simulations in periodic systems. Good agreement with experimental results is obtained by using a biexponential transverse relaxation model for each spin site.  相似文献   

11.
一种新的DENUDATINE型C20二萜生物碱结构的NMR研究   总被引:2,自引:0,他引:2  
从内蒙西伯利亚乌头中分离得一个新的C20二萜生物碱,采用选择性远程DEPT,同核和异核二维NMR技术相结合进行了研究,其结构确定为Lepenine的C-11基向立体异构体,定名为11a-hydroxylapenine.结果表明,选择性远程DEPTNMR技术对于连接这类化合物中被季碳和杂原子分割的NMR自旋体系,测定基本骨架和确定信号归属都有独到之处.  相似文献   

12.
It has been established by means of one-and two-dimensional 1H and 13C NMR Spectroscopy that adenine acyclonucleosides are substituted at either N-9 or N-7 with 2',3'-dihydroxyprop-1-yl (2 and 3) or 2'-hydroxyprop-1-yl (4 and 5) aliphatic chains. The N-3 isomer has not been formed, as claimed previously. This was deduced on the basis of chemical shifts, substituent induced chemical shifts, magnitude and multiplicity of C-H couplings as well as connectivities in 2D homo-and heteronuclear correlation spectra.  相似文献   

13.
Homonuclear higher quantum NMR spectra of heteronuclear spin systems result in fewer transitions aiding the analyses. In such experiments the spin states of the heteronuclei do not get disturbed in both single and multiple quantum dimensions resulting in the separation of active homonuclear and passive heteronuclear couplings in two dimensions. The cross sections of the single-quantum dimension get displaced according to the strengths of the passive couplings. The directions of the displacement of these cross sections provide relative signs among the passive couplings. The present study demonstrates the situations when the displacement vectors, though provide the relative signs, could be ambiguous. The dynamics of the spin systems in homo- and heteronuclear multiple quantum studies have been discussed using polarization operator approach. The experimental results on 13C- and 15N-labeled isotopomers of acetonitrile, in both isotropic and thermotropic liquid crystalline phases, are reported.  相似文献   

14.
A modification of the recently reported ACCORD-HMBC long-range heteronuclear shift correlation experiment is described. The new experiment, IMPEACH-MBC (improved performance accordion heteronuclear multiple-bond correlation), introduces a new pulse sequence element, a constant time variable delay. The incorporation of the constant time variable delay into the IMPEACH-MBC sequence suppresses (1)H-(1)H coupling modulation inherent to the utilization of the accordion principle to sample a broad range of potential long-range heteronuclear couplings. (1)H-(1)H coupling modulation, which introduces an F(1) modulation or a "skew" of responses in the second frequency domain of the ACCORD-HMBC experiment, is suppressed in the IMPEACH-MBC experiment. Results of identically optimized IMPEACH-MBC and ACCORD-HMBC experiments performed on a sample of strychnine are compared.  相似文献   

15.
Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy has been proven to be a powerful technique for chemical, biological, and medical studies. Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are two frequently used 2D NMR methods. In combination with spatially encoded techniques, a heteronuclear 2D NMR spectrum can be acquired in several seconds and may be applied to monitoring chemical reactions. However, it is difficult to obtain high-resolution NMR spectra in inhomogeneous fields. Inspired by the idea of tracing the difference of precession frequencies between two different spins to yield high-resolution spectra, we propose a method with correlation acquisition option and J-resolved-like acquisition option to ultrafast obtain high-resolution HSQC/HMBC spectra and heteronuclear J-resolved-like spectra in inhomogeneous fields.  相似文献   

16.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for 1H–13C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR π-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized 1H–13C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with 13C in natural abundance, as well as simulations, confirm the very weak effect of 1H–1H homonuclear couplings on the spectra recorded with spinning frequencies of 25–30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CHn groups is discussed, and 13C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

17.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for (1)H--(13)C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR pi-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized (1)H--(13)C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with (13)C in natural abundance, as well as simulations, confirm the very weak effect of (1)H--(1)H homonuclear couplings on the spectra recorded with spinning frequencies of 25--30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CH(n) groups is discussed, and (13)C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

18.
Two-dimensional pulse sequences for the determination of heteronuclear long-range coupling constants are presented. The sequences are based on the HMQC/HMBC or HSQC technique with subsequent optional homonuclear I-spin transfer. However, they yield tilted cross-peak patterns displaying antiphase heteronuclear coupling constants in the projections of both dimensions, which allow accurate determination of the couplings even in cases where the linewidth is of comparable magnitude. Two characteristic pulse-sequence elements were implemented to shape theF1domain: the first element allows an arbitrary scaling of the heteronuclear coupling splittings relative to S-spin chemical-shift differences, whereas the second element achieves homonuclear broadband decoupling among the I spins in the HMQC/HMBC experiments and thus allows purely absorptive representations of such spectra. In comparison with established (ω1) X-half-filtered TOCSY spectra, the signal dispersion inF1is significantly improved and largely under experimental control. Furthermore, heteronuclear couplings of (I1, S) pairs where S is either quaternary or carries one or more I spins that do not belong to the same I-coupling network as I1can also be measured. The implementation of pulsed field gradients results in good suppression of spectral artifacts.  相似文献   

19.
The polarization transfer dynamics in a recently introduced deuterium—carbon NMR correlation method is studied, both theoretically and experimentally. The technique, which exploits heteronuclear multiple-quantum coherences, is useful for measuring and assigning 2H quad-rupolar couplings in ordered media. It is also shown that the experiment is suitable for implementation under off-magic-angle spinning conditions. The approach is demonstrated on a perdeuterated liquid crystal.  相似文献   

20.
A new two-dimensional scheme is proposed for accurate measurements of high-resolution chemical shifts and heteronuclear dipolar couplings in NMR of aligned samples. Both the (1)H chemical shifts and the (1)H-(15)N dipolar couplings are evolved in the indirect dimension while the (15)N chemical shifts are detected. This heteronuclear correlation (HETCOR) spectroscopy yields high-resolution (1)H chemical shifts split by the (1)H-(15)N dipolar couplings in the indirect dimension and the (15)N chemical shifts in the observed dimension. The advantages of the HETCOR technique are illustrated for a static (15)N-acetyl-valine crystal sample and a (15)N-labeled helical peptide sample aligned in hydrated lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号