首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 17O NMR spectra of a number of unsaturated 5-membered cyclic acetals, 2-substituted 4-methylene-1,3-dioxolanes and their endocyclic isomers, 4-methyl-1,3-dioxoles, have been recorded. The 17O NMR chemical shifts, in comparison with those of similarly 2-substituted 1,3-dioxolanes, were used to explore the variation of the strength of p– conjugation in the unsaturated acetals as a function of the nature of substitution at C2. The 17O NMR shift data reveal that alkoxy substituents have a significantly more favorable effect on the strength of p– conjugation in 4-methyl-1,3-dioxoles than in 4-methylene-1,3-dioxolanes. This fact appears to be responsible for the previously observed unexpectedly large effect of alkoxy substitution on the relative thermodynamic stabilities of these two classes of isomeric compounds. Additional information of the unexpected charge distribution in 4-methyl-1,3-dioxoles is provided by their 1H and 13C NMR spectra.  相似文献   

2.
3.
The title compound (C4N2H12)2Zr(C2O4)4·H2O 1 was synthesized by the reaction of ZrOCl2·8H2O, H2C2O4·2H2O and piperazinium in aqueous solution. Single-crystal X-ray analysis has revealed that compound 1 (C16H26N4O17Zr, Mr = 637.63) crystallizes in the monoclinic system, space group P21/c with a = 9.0425(3), b = 13.3844(3), c = 19.1191(5)A, β = 98.365(1)o, V = 2289.34(11) A3, Z = 4, Dc = 1.850 g/cm3, F(000) = 1304, μ = 0.577 mm-1, the final R = 0.0240 and wR = 0.0628 for 4386 observed reflections with I > 2σ(I). X-ray crystal-structure analysis suggests that compound 1 consists of [Zr(C2O4)4]4- anion and two protonated piperazinium cations. The anions are linked through hydrogen bonds of piperazinium. FT-IR and Raman spectra clearly show the existence of oxalate groups in the crystal lattice.  相似文献   

4.
The cobalt(II) complex C20H34O20Co has been synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. The crystal belongs to triclinic, space group P with a = 5.1374(10), b = 10.519(2), c = 12.913(3) (A), α = 86.89(3), β = 79.94(3), γ = 86.74(3)o, V = 685.3(3) (A)3, Z = 1, Mr = 653.40, Dc = 1.583 g/cm3, μ = 0.717 mm-1, F(000) = 341, the final R = 0.0657 and wR = 0.1141 for 1900 observed reflections with I > 2σ(I). The cobalt ion is six-coordinated by two O atoms of different 1,3-bdoaH- ligands and four water molecules, residing in an octahedral environment. The intermolecular hydrogen bonds form a 3-D supramolecular network structure.  相似文献   

5.
Two new Cd(II) coordination polymers, [Cd(C4H6N2)2(C4H2O4)(H2O)2] n (1) (where C4H6N2?=?2-methylimidazole, C4H2O4?=?fumarate), and [Cd(C4H6N2)(H2O)(C4H4O4)] n ?·?nH2O (2), (where C4H4O4?=?succinates), have been prepared and structurally characterized by single crystal X-ray diffraction. Complex 1 crystallizes in the triclinic space group P 1 in a one-dimensional chain structure, in which carboxy is monodentate; a three-dimensional supermolecular network structure was formed through hydrogen bonding. In complex 2, the coordination geometry of the Cd atoms is a pentagonal bipyramid, and a two-dimensional sheet is formed though carboxyl group bridging. In 1 and 2, IR spectra indicate the presence of bridging carboxyl groups, confirmed by structure analyses.  相似文献   

6.
From hydrothermal treatment of benzene-1,2-diamine, pyrocatechol, and MoO3 in acetic acid solution, a new compound, [Mo22-O)2(C6H4O2)2(H2O)] · (C8H9N2)2 · 2H2O (I), constructed from pyrocatechol chelated dinuclear molybdenum units and 2-methylbenzimidazole has been synthesized. Single-crystal structure analysis reveals that the compound crystallizes in the monoclinic space group P21/c with a = 23.365(2), b = 7.2214(5), c = 19.3021(16) β = 97.929(4), V = 3225.6(5), Z = 4, M = 808.46, ρc = 1.665 g/cm3, μ(MoK α) = 0.84 mm?1, F(000) = 1608, the final R = 0.0622 and wR = 0.1484 for 7385 independent reflections with R int = 0.0393. Interestingly, an in situ condensation between acetic acid and benzene-1,2-diamine has occurred, and the unexpected 2-methyl-1-H-benzo[d] imidazoles serve as counterions and N-H donors to form stable hydrogen-bond network in the crystal. Furthermore, intermolecular hydrogen bonds are found among the cations, anions and crystalline water molecules. The double nuclear molybdenum units are connected by O-H...O hydrogen bonds with the crystalline water molecules to form one-dimensional chains, and the chains are further joined together by N-H...O to form a quasi-two dimensional structure.  相似文献   

7.

Reaction of a freshly prepared Ni(OH)2?2 x (CO3) x ·yH2O with maleic acid in H2O at room temperature afforded [Ni(H2O)6][Ni(H2O)2(C4H2O4)]·4H2O, which consists of [Ni(H2O)6]2+ cations, [Ni(H2O)2(C4H2O4)]2? anions and lattice H2O molecules. Ni atoms in cations are octahedrally coordinated and Ni atoms in anions are each octahedrally coordinated by bidentate chelating maleato ligands and two water molecules at trans positions. Cations and anions are interlinked by hydrogen bonds to form 1D chains, which are hexagonally arranged and connected by the lattice water molecules. When heated in a flowing argon stream, the compound decomposes, with complete dehydration being followed by dissociation of nickel maleate into NiO and maleic anhydride.  相似文献   

8.
Two Cu(II) hydroxo succinates [Cu3(H2O)2(OH)2(C4H4O4)2]?·?4H2O (1) and [Cu4(H2O)2(OH)4(C4H4O4)2]?·?5H2O (2) and one Cu(II) hydroxo glutarate [Cu5(OH)6(C5H6O4)2]?·?4H2O (3) have been prepared and structurally characterized by single crystal X-ray diffraction methods. They feature 1D and 2D copper oxygen connectivity of elongated {CuO6} octahedra in “4?+?1?+?1” and “4?+?2” coordination geometries. Within 1, linear trimers of three edge-sharing {CuO6} octahedra are connected into copper oxygen chains, which are bridged by the anti conformational succinate anions to generate 2D layers with mono terminally coordinating gauche succinate anions on both sides. The layers are assembled into a 3D framework by interlayer hydrogen bonds with lattice H2O molecules distributed in channels. Different from 1, the principal building units in 2 are linear tetramers of four edge-sharing {CuO6} octahedra. The tetramers are condensed into copper oxygen chains and the succinate anions interlink them into a 3D framework with triangular channels filled by lattice H2O molecules. The {CuO6} octahedra in 3 are edge-shared to form unprecedented 2D inorganic layers with mono terminally coordinating glutarate anions on both sides. Interlayer hydrogen bonding interactions are responsible for supramolecular assembly of the layers into a 3D framework with lattice H2O molecules in the channels. The inorganic layers in 3 can be described as hexagonal close packing of oxygen atoms with the Cu atoms in the octahedral cavities. The title compounds were further characterized by elemental analyses, IR spectra and thermal analyses.  相似文献   

9.
The title compound (C6N3H18)2Ti4O4(C2O4)7(4H2O 1 (C13H22N3O18Ti2, Mr = 604.14) was synthesized by the reaction of Ti(SO4)2, H2C2O4(2H2O and N-(2-ammonioethyl)- piperazinium (AEPP) in aqueous solution. The single-crystal X-ray analysis has revealed that 1 crystallizes in the triclinic system, space group Pī with a = 9.1437(6), b = 11.4991(10), c = 11.6975(8)A, α = 96.2915(18), β = 107.998(3), γ = 104.276(4)°, V = 1110.35(14)A3, Z = 2, Dc = 1.807 g/cm3, F(000) = 618, μ = 0.815 mm-1, the final R = 0.0463 and wR = 0.1264 for 3718 observed reflections with I > 2σ(I). X-ray crystal-structure analysis suggests that compound 1 consists of [Ti4O4(C2O4)7]6- anion and two protonated N-(2-ammonioethyl)piperazinium cations. The anions are linked into an infinite chain through Ti4O4(C2O4)8 by sharing the oxalates as bridging ligands.  相似文献   

10.
11.
12.
Under hydrothermal conditions, two new ribbon-like structures, [Cu(C14H9O4)-analysis revealed that these structures were constructed by mixed ligands. The coordination polymer forms the basic architecture while the weak interactions extend the framework into a secondary structure. The whole structures of them are governed by collaboration of the strong and weak interactions. Compound 1 crystallizes in monoclinic, space group C2/c with a = 17.0485(3), b =1 1.0558(3), c = 22.7623(4) A, β = 102.465(1)°, V = 4189.2(2) A3, Z = 4, Mr = 915.44, Dc = 1.451g/mL, F(000) = 1900 andμ(MoKα) = 0.587 cm-1. The final R and wR are 0.0030 and 0.1022,respectively for 3037 observed reflections with I > 2σ(I). Compound 2 crystallizes in monoclinic,space group P21/c with a = 11.5963(4), b = 11.7004(5), c = 17.1254(5) A,β = 95.620(1)°, V =2312.4(1) A3, Z = 4, Mr = 556.35, Dc = 1.598 g/mL, F(000) = 1132 andμ(MoKα) = 0.912 cm-1The final R and wR are 0.0431 and 0.1050, respectively for 2629 observed reflections with I > 2σ(I).  相似文献   

13.
The title compound, [Cu(phen)2(SO4)(H2O)]·0.5C4H4O4·7H2O (phen = 1,10-phe-nanthroline and C4H4O4 = fumaric acid), has been synthesized and characterized by single-crystal X-ray diffraction. The crystal is of triclinic, space group P with a = 11.4827(2), b = 11.9086(2), c = 13.77350(10)(A), α = 80.6830(10), β = 66.6480(10), γ = 64.0480(10)o, V = 1554.63(4) (A)3, Mr = 722.17, Z = 2, Dc = 1.543 g/cm3, μ = 0.845 mm-1, F(000) = 750, R = 0.0349 and wR = 0.0837 for 4754 observed reflections (I > 2σ(I)). The compound contains a six-coordinated copper(II) center, which is surround by four N atoms of two phen ligands (Cu-N distances in the range of 1.997(2)~2.225(2)(A)), one sulfate O atom (Cu-O = 2.0037(17) (A)) and one water O atom (Cu-O(5w) = 2.719(2) (A)) in a distorted octahedral geometry. Extensive hydrogen-bonding interactions are involved in water molecules, ligated sulfate anions and fumaric acid molecules. In addition, π-π interactions via aromatic nitrogen-containing ligands are also discussed. The combination of non-covalent interactions leads to the formation of a 3-D network structure.  相似文献   

14.
The binuclear complexes [Cu2L2(H2O)4] · 5H2O (1) and [Ni2L2(H2O)4] · 2H2O (2) (where L = C11H11NO5S, H 2 L = 2-[(3-formyl-5-methyl-2-hydroxy-benzylidene)-amino]ethanesulfonic acid) have been synthesized and characterized by IR, elemental analysis and X-ray diffraction. The crystals belong to the monoclinic system, space group P21/c. Complex 1: a = 16.8902(12), b = 11.2829(6), c = 17.4249(11) Å; β = 106.709(4)°; S = 1.131; V = 3180.5(3) Å3; Z = 4; D Calcd = 1.729 g cm?3; F(000) = 1712; μ = 1.554 mm?1; R 1 = 0.0519, wR 2 = 0.1349; complex 2: a = 11.399(2), b = 19.985(3), c = 7.3694(10) Å; β = 108.664(7)°; S = 1.157; V = 1590.6(4) Å3; Z = 2; D Calcd = 1.604 g cm?3; F(000) = 800; μ = 1.388 mm?1; R 1 = 0.1859, wR 2 = 0.4346. The geometry around each metal(II) center can be described as slightly distorted octahedral. Water-sulfonic clusters and (H2O)4 water clusters can be observed for 1 from the crystal packing diagram, while cavity and offset face-to-face π–π stacking can be observed for 2. The complexes have been tested for the antibacterial activities which show antibacterial activities of 1 for β-hemolytic streptococcus, Staphylococcus aureus and Escherichia coli, and the antibacterial activity of 2 only for β-hemolytic streptococcus.  相似文献   

15.
徐海珍  谢丽芬  张海利  李蕾  马源  朱有全 《结构化学》2014,33(10):1451-1454
The title compound 2-(4-ethoxybenzoyl)cyclopentane-1,3-dione(C14H14O4) was synthesized, and its crystal structure was studied. It crystallized in the triclinic system, space group P1 with a = 8.980(2), b = 9.080(2), c = 15.482(3) , α = 93.49(3), β = 93.84(3), γ = 107.27(3)°, Dc = 1.365 g/cm3, Z = 4, λ = 0.71073, μ(MoKα) = 2.769 mm-1, Mr = 246.25, V = 1198.5(4)3, F(000) = 520, the final R = 0.0559 and wR = 0.1278 for 2301 observed reflections with I 2σ(I). In the crystalline state, the molecular skeleton contains one enol grouping, which is intramolecularly hydrogen bonded to a neighboring keto O atom. Preliminary bioassay result showed that this compound provided 93.8% and 87.2% control of B. campestris and A. retroflexus at post-emergence at 375 g/hm2.  相似文献   

16.
This work deals with the prediction and experimental measurements of the (solid + liquid) equilibrium (SLE) in acid medium for industrial purposes. Specific systems including KCl–ethanol–water–HCl and K2SO4–water–H2SO4 were analyzed. At first, a critical discussion of SLE calculations was given, based on the well-known UNIQUAC extended and LIQUAC models. Two new proposals were derived, considering the explicit necessity of a new reference state for SLE calculations for the studied (solvents + acid) mixtures. The solubility of KCl in water–ethanol–HCl mixed solvents was measured in the temperature range of 300.15 to 315.15 K using an analytical gravimetric method. These results combined with some other experimental data reported in the open literature let us to propose a set of parameters for the new models. They included the interaction parameters between ethanol and the H+ ion. The prediction capability of the new models, for calculations in acid medium, was illustrated. Experimentally, it was observed that the (K2SO4 + water + H2SO4) system presented the unusual behavior of increasing K2SO4 solubility with an increase in the sulfuric acid concentration. This was accurately predicted by the newly proposed models.  相似文献   

17.
《Solid State Sciences》2001,3(3):309-319
Single crystals of two lanthanide complexes, presenting similar formula Ln(H2O)x(C2O4)2 · NH4 with Ln=La, x=0 and Ln=Gd, x=1, have been prepared, in closed system at 200 °C. The gadolinium complex is bi-dimensional. A layer is built by the packing of the basic unit, [Gd(C2O4)]4. The gadolinium atoms are related only by bischelating oxalate ligands, the ammonium ion and the water molecule (bound to the gadolinium atom) are localized into the interlayer space. The lanthanum complex is tri-dimensional. The basic building unit remains approximately the same and the packing of these units form a layer. However, within these units, the lanthanum atoms are related by either an oxalate ligand or an edge. Moreover, an oxalate ligand assumes the connection between the layers. The ammonium ion is localized into two sets of intersecting channels. Pure phase of the gadolinium complex has been prepared at 100 °C and extended to some lanthanide elements, Eu…Yb. As the size of the lanthanide ionic radius is decreasing, it is noticeable that the a unit–cell constant follows an expansion pattern while the others two follow an usual contraction one. The thermal behavior of this family shows that the anhydrous compounds are obtained and that some water molecule is sorbed during the cooling. Thus, the anhydrous compounds present a relatively open-framework with some small micropores.  相似文献   

18.
Single crystals of the Rb4H2I2O10· 4H2O were synthesized for the first time and studied by X-ray diffraction analysis. The crystals are monoclinic, a = 7.321(6) Å, b = 12.599(8) Å, c = 8.198(8) Å, = 96.30(7)°, Z = 2, space group P21/c. The H2I2O10 4– anion is formed by the edge-sharing IO6 octahedra. The anions are united by hydrogen bonds into a chain running along the x axis. The chains are combined by water molecules into a three-dimensional structure through hydrogen bonds. The compound is a proton conductor. The conductivity values measured at 20–60°C vary within 10–6 to 10–4 ohm–1 cm–1.  相似文献   

19.
The syntheses and crystal structures of the closely related but non-isostructural Cd2(C19H21N3O3F)4(H2O)2?·?4H2O (1) and Pb2(C19H21N3O3F)4?·?4H2O (2) are described, where C19H21N3O3F? is enrofloxacinate (enro). Both compounds contain centrosymmetric, binuclear, neutral complexes incorporating a central diamond-shaped M2O2 (M?=?Cd, Pb) structural unit. The Cd2+ coordination polyhedron in 1 is a CdO6 trigonal prism, including one coordinated water. The Pb2+ coordination polyhedron in 2 can be described as a very distorted square-based PbO5 pyramid, although two additional short Pb?···?O (<3.1?Å) contacts are also present. In the crystal of the cadmium complex, O–H?···?O hydrogen bonds lead to a layered structure. In the lead compound, O–H?···?O and O–H?···?N interactions lead to chains in the crystal. Crystal data: 1: C76H96Cd2F4N12O18, M r?=?1766.45, triclinic, P 1, a?=?12.185(2)?Å, b?=?12.306(3)?Å, c?=?14.826(3)?Å, α?=?68.15(3)°, β?=?70.28(3)°, γ?=?86.11(3)°, V?=?1938.2(7)?Å3, Z?=?1, T?=?298 K, R(F)?=?0.030, wR(F 2)?=?0.079. 2: C76H88F4N12O16Pb2, M r?=?1920.00, triclinic, P 1, a?=?12.0283(4)?Å, b?=?12.7465(4)?Å, c?=?13.0585(4)?Å, α?=?83.751(1)°, β?=?74.635(1)°, γ?=?81.502(1)°, V?=?1904.3(1)?Å3, Z?=?1, T?=?298?K, R(F)?=?0.021, wR(F 2)?=?0.049.  相似文献   

20.
《Fluid Phase Equilibria》1999,165(2):157-168
A simple method is developed to estimate mixture critical temperatures (Tc), pressures (Pc), and densities (ρc) as a function of overall composition (X) from near critical region experimental coexistence data. This three-step method is applied to four mixtures, CO2–C3H8, CO2nC4H10, C2H6–C3H8, and C3H8nC4H10. Isothermal liquid–vapor coexistence data, which includes temperature, vapor pressure, coexisting densities (ρ and ρv), and coexisting compositions for the more volatile component (x1v and x1) are used. In the first step, the difference of the saturated liquid and vapor densities (ρρv) is fitted to an empirical function in ((PcP)/Pc) to obtain Pc. Then P/Pc and ((ρ+ρv)/2ρc) are simultaneously fitted to functions of a polynomial in (X1−(x1v+x1)/2) yielding estimates of ρc and X1. Finally, the discrete estimated critical data points are fitted with an equation to provide a continuous representation of the critical lines. The method is successfully tested for the mixtures, CO2–C3H8 and CO2nC4H10, for which there is a reasonable amount of isothermal data. The procedure is then applied to the mixtures, C2H6–C3H8 and C3H8nC4H10, for which there are sparse data. For all four mixtures, the critical temperature line, Tc vs. X1, matches literature values within ±0.5%. The critical pressure line, Pc vs. X1, and critical density line, ρc vs. X1, match literature values, in general, within ±2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号