首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three differently loaded anthraquinone polymers have been prepared by condensation of 2-anthraquinonecarbonylchloride and poly(ethylenimine). They have been adsorbed on vitreous carbon or mercury electrodes by dipping the electrode in a solution of pyridine or methylene chloride containing 0.01–0.05% polymer. The influence of adsorption parameters and of electrochemical variables on the voltammetric behavior of the polymer-coated electrodes in aqueous buffer solutions is described. Changing the dip time in pyridine from 30 s to 5 min and changing the polymer concentration have very little effect on the apparent coverage (=1.3-1.8×10?9 mol cm?2) and peak shape. In contrast, an increase of the loading (the number of monomer units loaded with quinone) or the use of methylene chloride as a dip-coating solvent instead of pyridine affected the shape of the cathodic and anodic peaks which broaden and tend to separate. The peak shape is characterized by a tailing which tends to disappear at slow scan rate. The modifications of the peak shape and position when the scan rate is changed, have been shown to fit qualitatively with a proposed polylayer model in which electron (proton) transfer to the sublayer nearest the underlying conductor is slow. It has been observed that the weak acid dissociation constants for the dihydroanthraquinone and hydroanthraquinone anion are both different for the corresponding monomer in solution (pKA=8.65 and 11.6) and the adsorbed polymer (pKA=9 and 13).  相似文献   

2.
Different organic molecules were covalently grafted on glassy carbon electrodes (GCEs) by an electrochemical reduction or potentiostatic process of several in situ-generated diazonium cations in acidic aqueous solution containing NaNO2. The cyclic voltammetry implemented in 0.1?M KCl aqueous solution containing 5?mM Fe(CN) 6 3? or Ru(NH3) 6 3+ confirmed the blocking properties of the modified GCEs. The electrochemical impedance spectroscopy (EIS) performed in 0.1?M KCl aqueous solution containing 5?mM Fe(CN) 6 3?/4? was used to measure the surface coverage of the modifiers on GCE; the results showed that the modified layers on GCEs are very compact. The linear sweep voltammetry (LSV) was employed to investigate the electrochemical sensing properties of the bare and modified GCEs toward paracetamol (PCT) in sulfuric acid solution of pH?1.02, and the corresponding calibration plots were obtained, respectively. The results indicated there is an oxidation peak of PCT in the linear sweep voltammograms on the bare and modified GCEs with the active terminal groups such as ?OPO3H2, ?SO3H, ?COOH, and so on, but do not appear on GCEs modified with the inert terminal groups such as ?NO2 and ?Br. These imply that the GCEs modified with the active terminal groups display an electrochemical behavior like bulk GCE; however, those with the inert terminal groups present an electrochemical behavior like microelectrode. The varying electrochemical sensitivity of all the electrodes toward PCT was explained according to electronegativity and pK a of the terminal groups of the modifiers on the electrodes and hydrogen bond between the modifiers and PCT. Apparent standard rate constants of PCT oxidation reaction on the bare and modified GCEs were obtained from the Laviron’s approach.  相似文献   

3.
The first chiral dicyclopentadienyl compounds of zirconium (IV) and hafnium(IV) of the form (η5-C5H5) (η5-RC5H4)MClX (X = alkoxy, aryloxy or benzyl group) have been prepared and studied. The presence of an asymmetric metal atom is shown by NMR of these complexes containing suitable ligands.  相似文献   

4.
Novel electrochemical sensors for epinephrine (EP) based on a glassy carbon electrode (GCE) modified with a redox polymer film and iron (III) oxide nanoparticles (Fe2O3NP) have been developed. Two redox polymers‐poly(brilliant cresyl blue) (PBCB) and poly(Nile blue) (PNB), and two different architectures‐polymer/Fe2O3/GCE and Fe2O3/polymer/GCE were investigated. The electrochemical oxidation of epinephrine at the modified electrodes was performed by differential pulse voltammetry (DPV), in pH 7 electrolyte, and the analytical parameters were determined. The results show enhanced performance, more sensitive responses and lower detection limits at the modified electrodes, compared to other electrochemical epinephrine sensors reported in the literature. The best voltammetric response with the lowest detection limit was obtained for the determination of epinephrine at PBCB/Fe2O3/GCE. The novel sensors are reusable, with good reproducibility and stability, and were successfully applied to the determination of epinephrine in commercial injectable adrenaline samples.  相似文献   

5.
The article presents the results of studies of new nanosize catalysts of electrochemical oxygen reduction reaction (ORR) obtained using the method of thermal decomposition of polymer complexes of nickel and cobalt with tetradentate (N2O2) Schiff bases. The catalysts are characterized using the methods of thermogravimetry, electrochemical quartz microgravimetry, scanning electron microscopy with X-ray microanalysis, XPS. The ORR process on electrodes modified by the above catalysts was studied using the voltammetry and rotating disk electrode techniques. The obtained catalysts manifested high specific activity per initial polymer mass (more than 600 mA/mg).  相似文献   

6.
The solubility of thallium sulfide in 1M NaClO4 at 25° ranges between 105M as a function of pH and total sulfide concentration. Soluble thallium was analysed by anodic stripping using the hanging mercury drop electrode. The following complexes have been identified and their stability constants calculated: Tl2(HS)+, Tl(HS), Tl2(OH) (HS) and Tl2(OH)2(HS).  相似文献   

7.
The electrochemical reduction of oxygen has been studied on anthraquinone (AQ) modified nickel electrodes in 0.1 M KOH solution using the rotating disk electrode (RDE) technique. Modification of the Ni electrode surface with AQ by electrochemical reduction of the corresponding diazonium salt was carried out in two different media (in acetonitrile and in aqueous acidic solution). The AQ-modified Ni electrodes showed a good electrocatalytic activity for O2 reduction. The RDE data indicate that the reduction of oxygen on Ni/AQ electrodes proceeds by a two-electron pathway in alkaline solution. The O2 reduction results obtained for Ni/AQ electrodes are compared with those of AQ-modified glassy carbon electrodes.  相似文献   

8.
The [η5-cyclopentadienyl-η6-pentamethylanilineiron]+ cation has been prepared from ligand exchange between ferrocene and pentamethylaniline. Acidic chlorides (CH3COCl, C6H5COCl) and sulfonyl chlorides (p-CH3C6H4SO2Cl, camphorsulfonyl-d10 chloride) react in situ with deprotonated species after treatment of this cation with t-BuOK in THF. An acid—base reaction between amide or sulfonamide derivatives and deprotonated species takes place and can limit the yield; the mechanism is discussed. Amide derivatives also have been prepared by direct action of acidic chlorides with [η5-C5H5Fe-η6-C6-(CH3)5NH2]+ in acetone solution. An optically active sulfonamide has been prepared.  相似文献   

9.
Both TiO2 nanoparticles and carbon nanotubes have been usually utilized to modify the electrodes to enhance the detection sensitivity of biomolecular recognition. In this research, novel TiO2/CNT nanocomposites have been prepared and doped on the carbon paper as the modified electrodes. Subsequently, the redox behavior of the ferricyanide probe and the surface properties of the cancer cells coated on the modified electrodes have been investigated by using electrochemical and contact angle measurements. Compared with electrochemical signals on bare carbon paper and nanocomposite modified substrates, the significantly enhanced electrochemical signals on the modified electrodes covered with cancer cells have been observed. Meanwhile, different leukemia cells (i.e., K562/ADM cells and K562/B.W. cells) could be also recognized because of their different electrochemical behavior and hydrophilic/hydrophobic features on the modified electrodes due to the specific components on the plasma membranes of the target cells. This new strategy may have potential application in the development of the biocompatible and multi‐signal responsive biosensors for the early diagnosis of cancers.  相似文献   

10.
Osmotic pressure measurements have been carried out with moderately concentrated solutions (v2 ? 0·1 g/cm3) of linear and branched polystyrenes in good and poor solvents at various temperatures. The experimental study of star- and comb-shaped polystyrenes with high segment density leads to the following conclusions: (1) we confirm the lowering of the Flory “theta” temperature of these polymers with respect to that of linear homologues, already found by light scattering technique. (2) We show that, in the low concentration range, the polymer solvent interaction parameter % depends not only upon the polymer concentration but also is a function of the intramolecular volume fraction within the polymer coil: this effect tends to disappear at high concentrations.  相似文献   

11.
The electrochemical behavior of the gold/electrolyte interface in aqueous 1 M NaNO3 solutions in the presence of an organic monolayer of n-decanethiol (CH3(CH2)9S) is studied by electrochemical impedance spectroscopy in the frequency range of 10–105 Hz and also by cyclic voltammetry. It is experimentally shown that in the potential interval from 0 to ?0.5 V (vs. SCE), the dense monolayer film decreases the measured current density approximately 40-fold. The measured capacitance falls down to 1–2 μF/cm2. Based on the analysis of impedance characteristics acquired with the use of empirical equivalent circuits comprising ideal and nonideal analogues of electric circuits, the tentative estimates of the thickness of organic monolayers formed on Au electrodes with various roughness factors are obtained. Using the complex nonlinear regression (CNLS) method and a model of microarray electrode, the porous structure of adsorbed monolayers is revealed and the transition frequency of interfaces under study is determined. The degree of inhibition of the electron transfer across the Au/n-decanethiol/solution interface is determined by comparing the rate constants for the Ru[(NH3)6]3+/2+ redox process on clean and modified electrodes. The acquired results are compared with available literature data.  相似文献   

12.
The electrochemical characterization of three different polystyrene-b-polybutadiene block-copolymers, functionalized with diferrocenylsilane units, is reported. The PB-blocks have been functionalized with different fractions of electronically communicated, PSm-PBnp (HSiMeFc2)p units, where m = 615, n = 53, p = 39 (1), m = 375, n = 92, p = 76 (2) and m = 455, n = 204, p = 170 (3). Electrochemical characterization has been carried out both in solution and after electrochemical deposition onto platinum electrodes. The bioelectrocatalytical properties of electrodes modified with the polymers in the nicotinamide dinucleotide (NADH) and glucose oxidase (GOx) oxidations have been investigated as a function of the constitution and structure of the polymers. The analytical properties of electrodes modified with these polymers as sensors of NADH and GOx are described. In addition, an amperometric biosensor for glucose, prepared by electrostatic immobilization of glucose oxidase onto a platinum electrode modified with one of the ferrocenyl block-copolymers as an example, has been developed.  相似文献   

13.
The electrochemical behavior of SiCu W11 heteropolyacide in acidic aqueous solution was studied. The effect of solution pH on the electrochemical behavior of SiCu W11 was discussed and the mechanism was suggested. New electrode was modified by muhilayer films composed of heteropolyanion (SiCu W11 and cationic polymer poly (diallyldimethylammonium chloride). Cyclic vohammetry showed the uniform growth of the film. The modified electrodes exhibited some special electrochemical properties in the films, different from those in homogeneous aqueous solutions. The effect of pH on the redox behavior of SiCu W11 in the films was discussed in details. The muhilayer film electrodes have an excellent electrocatalytic response to the reduction of BrO3^- and NO2^-.  相似文献   

14.
The crystals of the iron(II)-thioglycolic acid complex 1-1, Fe(CH2SCOO)·H2O, are monoclinic, with lattice constants a = 7.54±0.02 Å, b = 8.57±0.01 Å, c = 6.95±0.01 Å and β = 90° 57′±9′. The space group is P21/c, each unit cell containing four entities Fe(CH2SCOO)·H2O. The structure consists of sheets of iron-sulfur chain assemblies. The iron atoms of two chains are connected by double oxygen bridges and thioglycolic anions; each iron is at the center of a highly distorted octahedron.  相似文献   

15.
Su L  Mao L 《Talanta》2006,70(1):68-74
This paper describes novel electrochemical properties of gold nanoparticles/alkanedithiol conductive films and their electroanalytical applications for voltammetric determination of trace amount of one kind of environmental pollutants, catechol. The conductive films are prepared by closely packing 12-nm diameter gold nanoparticles (Au-NPs) onto Au electrodes modified with the self-assembled monolayers (SAMs) of alkanedithiols (i.e., HS(CH2)nSH, n = 3, 6, 9). The assembly of the Au-NPs onto the SAM-modified electrodes essentially restores the heterogeneous electron transfer between Au substrate and redox species in solution phase that is almost totally blocked by the SAMs and, as a result, the prepared Au-NP/SAM-modified electrodes possess a good electrode reactivity without a remarkable barrier toward the heterogeneous electron transfer. Moreover, the prepared Au-NP/SAM-modified electrodes are found to exhibit a largely reduced interfacial capacitance, compared with bare Au electrode. These electrochemical properties of the Au-NP/SAM-modified electrodes essentially make them very useful for electroanalytical applications, which is illustrated by voltammetric determination of trace amount detection of environmental pollutant, catechol.  相似文献   

16.
Reactions of Ph2P(CH2)n(C5H4)Li, (n = 0, 2), with MCl4 or CpTiCl3 (M = Ti, Zr; Cp = η5-C5H5) form Cl2M[(η5-C5H4)(CH2)nPPh2]2 or Cl2CpTi[(η5-C5H4)-(CH2)2PPh2] in good yields. Chemical reduction with Al, or electrochemical reduction of these complexes, under CO, are described. The titanium(IV) and zirconium(IV) derivatives react with metal carbonyls (Mo(CO)6, Cr(CO)6, Fe(CO)5, Mo(CO)4(C8H12)) under formation of new heterobimetallic complexes. Reduction with Al of Cl2CpTi[(η5-C5H4)(CH2)2PPh2]Mo(CO)5 under CO results in a new heterobimetallic species containing low valent titanium. Both complexes Cl2M[(η5-C5H4)(CH2)2PPh2]2 (M = Ti, Zr) react with [Rh(μ-Cl)(CO)(C2H4)]2 to yield {RhCl(CO)(Cl2M[(η5-C5H4)(CH2)2PPh2]2)}x, which is assumed to be a dimer, in which the titanium or the zirconium compounds act as bridging diphosphine ligands between the rhodium atoms.  相似文献   

17.
Metallophthalocyanines confined on the surface of electrodes are active catalysts for a large variety of electrochemical reactions and electrode surfaces modified by these complexes can be obtained by simple adsorption on graphite and carbon. However, more stable electrodes can be achieved by coating their surfaces with electropolymerized layers of the complexes, that show similar activity than their monomer counterparts. In all cases, fundamental studies carried out with adsorbed layers of these complexes have shown that the redox potential is a very good reactivity index for predicting the catalytic activity of the complexes. Volcano-shaped correlations have been found between the electrocatalytic activity (as log I at constant E) versus the Co(II)/(I) formal potential (E°′) of Co-macrocyclics for the oxidation of several thiols, hydrazine and glucose. For the electroreduction of O2 only linear correlations between the electrocatalytic activity versus the M(III)/M(II) formal potential have been found using Cr, Mn, Fe and Co phthalocyanines but it is likely that these correlations are “incomplete volcano” correlations. The volcano correlations strongly suggest that E°′, the formal potential of the complex needs to be in a rather narrow potential window for achieving maximum activity, probably corresponding to surface coverages of an M-molecule adduct equal to 0.5 and to standard free energies of adsorption of the reacting molecule on the complex active site equal to zero. These results indicate that the catalytic activity of metallophthalocyanines for the oxidation of several molecules can be “tuned” by manipulating the E°′ formal potential, using proper groups on the macrocyclic ligand. This review emphasizes once more that metallophthalocyanines are extremely versatile materials with many applications in electrocatalysis, electroanalysis, just to mention a few, and they provide very good models for testing their catalytic activity for several reactions. Even though the earlier applications of these complexes were focused on providing active materials for electroreduction of O2, for making active cathodes for fuel cells, the main trend in the literature nowadays is to use these complexes for making active electrodes for electrochemical sensors.  相似文献   

18.
Irradiation of complexes {PtCl2(olefine)(amine)} leads to the departure of the olefinic ligand forming a dimeric compound {PtCl2(amine)}2 which has a trans configuration. The same behaviour is observed at different irradiation wavelengths, with variation of the nature of the coordinated olefin and with a cis or trans configuration of the starting compound. Experimental results show that the primary photochemical reaction pathway arises probably via a (d → π C2H4) charge transfer existed state. A simultaneous cistrans photoisomerization is observed in the case of the cis complexes.  相似文献   

19.
In this study, SnO2 nanoparticles (SNPs)-poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were developed for electrochemical monitoring of DNA hybridization. The surfaces of polymer modified and polymer-SNP modified pencil graphite electrodes (PGEs) were firstly characterized by using SEM analysis. The electrochemical behaviours of these electrodes were also investigated using the differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The polymer-SNP modified PGEs were then tested for the electrochemical sensing of DNA based on the changes at the guanine oxidation signals. Experimental parameters, such as; different modifications in DNA oligonucleotides, DNA probe concentrations were examined to obtain more sensitive and selective electrochemical signals for nucleic acid hybridization. After optimization studies, DNA hybridization was investigated in the case of complementary of hepatitis B virus (HBV) probe, mismatch (MM), and noncomplementary (NC) sequences.  相似文献   

20.
D. Cakmak  T. Bulut  D. Uzun 《Electroanalysis》2020,32(7):1559-1570
This present study describes a pencil graphite electrode surface covered with Cu(II) and Fe(III) complexes based on Salophen derivative Schiff bases in acetonitrile solution containing LiClO4 as a supporting electrolyte. Cyclic voltammetry method was used for the surface modification procedure with 25 cycle at a sweep rate of 50 mV s?1. Some characterization methods were used to identify of the prepared modified surfaces including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Ultraviolet‐visible Spectroscopy (UV‐Vis), and Scanning Electron Microscopy/Energy Dispersive X‐ray Spectroscopy (SEM/SEM‐EDX). The catalytic activity of these modified surfaces on the electrochemical oxidation of catechol (CC) was investigated and they compared with each other. The results demonstrated that these modified electrodes showed perfect electrocatalytic activity on the catechol determination, however the modified electrode prepared with the Cu(II) complex has higher catalytic activity than this prepared with the Fe(III) complex thanks to its the lower detection limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号