首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microwave spectrum of CH3OD has been observed in the frequency region between 14 and 92 GHz. All the ground-state transitions with J ≤ 8 and J = 2 ← 1, a-type transitions in the excited torsional states (v = 1 and v = 2) have been observed. The spectrum has been analyzed and rotational constants, torsional constants, torsion-vibration-rotation interaction constants, and centrifugal distortion constants have been evaluated. The Stark effect measurements have been made and the dipole moment components have been determined as μa = 0.833 ± 0.008 D and μb = 1.488 ± 0.015 D.  相似文献   

2.
Observation of the direct l-type resonance transitions in the microwave spectrum of the v4 = 1 state of PF3 has been extended to J = 36. The w-type interaction, (Δl = 0, ΔK = 6), has been found from measurements on the “forbidden” Stark trasitions in the K = 3 series. Also in this series a close accidental degeneracy was found between J = 30, K = 3 and 0, leading to new zero-field “forbidden” transitions through the r-type interaction (Δl = 2, ΔK = ?1) and to the determination of the C rotational constant. Nine spectroscopic parameters were determined using 140 observed frequencies including two “forbidden” trasitions. After suitable correction the B and C constants were used to determine the r0, rz, and re structures for PF3. The equilibrium structure is estimated to be P-F = 1.561 ± 0.001 Å and ∠FPF = 97.7 ± 0.2°.  相似文献   

3.
Measurements of the microwave spectrum of CF2 have been extended to include transitions up to J = 40. Using these extended measurements, a centrifugal distortion analysis has been performed and from the distortion constants, the force field, infrared spectrum, average structure, Coriolis coupling constants, and inertial defect have been calculated. The original assignment of the infrared spectrum has been confirmed. An improved value for the dipole moment, 0.469 ± 0.026 D, has been obtained.  相似文献   

4.
Measurements are reported for the rotational spectrum of the C4v molecule IOF5 in the ground vibrational state in the range 30–75 GHz (J7 ← 6 to J17 ← 16). The K-doubling of |k| = 2 transitions due to an off-diagonal centrifugal distortion interaction of the type (Δl, Δk) = (0, ±4) has been observed. The centrifugal distortion constants DJ, DJK, and R6 have been determined as 0.139(2) kHz, 0.107(4) kHz, and 21(2) Hz, respectively.  相似文献   

5.
A high-resolution infrared spectrum of methane-d2 has been measured in the C-D stretching band region (2025–2435 cm?1). Rotational structures of the ν2 and ν8 bands have been assigned by use of the ASSIGN-diagram method, and the c-type Coriolis interaction between ν2 and ν8 has been analyzed. The band origins, ν2 = 2203.22 ± 0.01 cm?1 and ν8 = 2234.70 ± 0.01 cm?1, the rotational constants and the centrifugal distortion constants for the two bands, and the Coriolis coupling constant, ∥;ξ28c∥; = 0.182 ± 0.015 cm?1, have been determined.  相似文献   

6.
Measurements of the microwave spectrum of the C4v molecule IF5 in the excited vibrational states v5(B1) = 1 and v9(E) = 1 are reported for the transitions J4 → 5, 5 → 6, 6 → 7, 8 → 9, and 9 → 10 (27–55 GHz). The Coriolis resonance interaction between these two states is analyzed by diagonalization of Hamiltonian matrices of dimension 3 × (2J + 1) in which all (Δlk) = (±2, ±2)(q+), (±2, ±2)(q?), and (0, ±4)(R6) interactions are included as off-diagonal terms in addition to the v5 = 1 ? v9 = 1, l9 = ±1(R59) Coriolis interaction. In the v9 = 1 state spectra, the B1B2l-doubling of the kl = ?1 transitions and A1A2 splittings of the kl = ?3 transitions and B1B2 splittings of the kl = +3 transitions, all enhanced by the Coriolis resonance, have been observed and measured. Least-squares refined rovibrational parameters for the v5 = 1 and v9 = 1 states are reported and a preliminary value for the rotational constant C9 has been obtained.  相似文献   

7.
The frequencies and assignments of 50 lines in the pure inversion spectrum of 14NH3 in the 00011 vibrational state are reported in the microwave frequency region 18–53 GHz and in selected regions up to 58 GHz.The J = 0 inversion frequency, K-type doubling constant K, l = 2, ?1 and molecular dipole moment in this state are 32 904.7 ± 2.0 MHz, 1.958 ± 0.040 MHz and 1.459 ± 0.002 D, respectively, where model inadequacies are included in the uncertainties of the first two parameters. The dipole moment measurements for this and the ground state are in excellent agreement with Stark laser measurements. An expression containing the effective l-type doubling constant is obtained from the combination of frequencies [ν(1, 1, 1) ? ν(1, 1, ?1) ? ν(2, 1, 1) + ν(2, 1, ?1)]8 = 10 361.894 ± 0.004 MHz. A preliminary value for the l-type doubling constant is 10 655 ± 20 MHz.  相似文献   

8.
The infrared absorption of arsine, AsH3, between 750 and 1200 cm?1 has been recorded at a resolution of 0.006 cm?1. Altogether 2419 transitions, including nearly 700 “perturbation allowed” transitions with Δ∥k ? l∥ = ±3, ±6, and ±9, have been assigned to the ν2(A1) and ν4(E) bands. Splitting of the transitions for K″ = 3, 6, and 9 was also observed. To fit the rotational pattern of the v2 = 1 and v4 = 1 vibrational states up to J = 21, all the experimental data were analyzed simultaneously on the basis of a rovibrational Hamiltonian which took into account the Coriolis interaction between ν2 and ν4 and also included several essential resonances within them. The derived set of 38 significant spectroscopic parameters reproduced the 2328 transition wavenumbers retained in the final fit within the accuracy of the experimental measurements.  相似文献   

9.
Diode laser measurements of the ν10 + ν11 (ltot = ±2) perpendicular band of cyclopropane have led to the assignments of roughly 600 lines in the 1880–1920-cm?1 region. Most of the spectra were recorded and stored in digital form using a rapid-scan mode of operating the laser. These spectra were calibrated, with the aid of a computer, by reference to the R lines of the ν1 + ν2 band of N2O. The ground state constants we obtained are (in cm?1) B = 0.670240 ± 2.4 × 10?5, DJ = (1.090 ± 0.054) × 10?6, DJK = (?1.29 ± 0.19) × 10?6, DK = (0.2 ± 1.1) × 10?6. The excited state levels are perturbed at large J values, presumably by Coriolis couplings between the active E′(ltot = ±2) and the inactive A′(ltot = 0) states. Effective values for the excited state constants were obtained by considering only the J < 15 levels. The A1-A2 splittings in the K′ = 1 excited states were observed to vary as qeffJ(J + 1), with qeff = (2.17 ± 0.17) × 10?4 cm?1.  相似文献   

10.
The frequencies and assignments of 45 inversion transitions of 15NH3 and 15 additional inversion transitions of 14NH3 in the ν4 state are reported. The J = 0 inversion frequency and K-type doubling constant for K,l = 2, ?1 are 31 602.72 MHz and 2.000 MHz for 15NH3. The expression containing the effective l-type doubling constant, q0 - 5qJ - Δη…, is calculated from the (J,K,l) = (1,1,1), (1,1,?1), (2,1,1), and (2,1,?1) transitions as 10 166.022 MHz. The contribution to this expression from the Coriolis coupling with 2ν2 is estimated for 14NH3.  相似文献   

11.
The JJ + 1 transitions (J = 4, 5, 6, 7, 8) in the microwave spectra of methyl isocyanide and its 15N derivative have been obtained and analyzed in the 4ν8 degenerate vibrational state. Theoretical analytical expressions are given for the rotational frequencies in a 4νE state, separately for the l = 0, ±2, ±4 values. These formulas could only be used as a starting point for the assignment and analysis, because of the complexity of the spectrum and the number of accidental resonances appearing in many l = 0 and ±2 lines for low K values. A detailed analysis was obtained through a diagonalization of the energy matrix. Many types of A1A2 doublings could be localized; in particular for CH315NC the K, l = ±1, ±4 doubling allowed the calculation of the g6 coefficient of the 〈K, l|H|, l ± 6〉 term. As in the 3ν8 state, some lines seem to undergo the effects of a vibrational resonance. A set of constants is given for both species, and a comparison is made with the other states.  相似文献   

12.
The microwave spectrum of HNO has been observed and analyzed. Both a-type and b-type transitions have been measured. The rotational constants obtained are A = 553903.0 ± 2.7 MHz, B = 42308.52 ± 0.10 MHz, and C = 39169.46 ± 0.10 MHz. In the analysis of the spectrum, centrifugal distortion corrections are tentatively taken into account by using the centrifugal distortion constants determined by Dalby. The quadrupole coupling constants for nitrogen in HNO are determined to be χaa = 0.36 ± 0.56 MHz, χbb = ? 5.46 ± 0.30 MHz, and χcc = 5.10 ± 0.26 MHz. The dipole moment and its components determined from the Stark effect measurement are μtotal = 1.67 ± 0.03 D, μa = 1.03 ± 0.01 D, and μb = 1.31 ± 0.02 D. The microwave spectrum of DNO has been reanalyzed by taking into account the centrifugal distortion effect. The inertia defects for HNO and DNO have been calculated. The results are limited in precision by the lack of reliable force constants.  相似文献   

13.
A third-order theory of the intensities of the allowed and “forbidden” (perturbation-allowed) transitions to the fundamental vibrational levels of C3v semirigid molecules has been worked out by using the method of contact transformations applied to the electric dipole moment operator. Explicit expressions have been obtained for the linestrengths of the allowed (Δk = 0, ±1) as well as forbidden (Δk = ±2, ±3, ±4) transitions from the ground vibronic state to the fundamental vibrational levels of C3v molecules. The treatment takes into account all the important Coriolis and anharmonic interactions in a C3v molecule, including the effect of the “2, 2” and “2, −1” l-type interactions and the Δk = ±3 interactions on the intensities of the allowed and forbidden vibrational-rotational transitions. The expressions for the linestrengths of the allowed and forbidden transitions are given here in a form suitable to fit the experimental data on the intensities in the vibrational-rotational spectra of C3v molecules.  相似文献   

14.
ESR investigations of Mn, Eu and Gd in highly degenerate SnTe - a p-type semiconductor with metallic behaviour - prove the existence of an exchange interaction between localized magnetic moments and charge carriers. The ratio of the exchange parameters JMn and JEu between charge carriers and Mn or Eu ions, respectively, amounts to |JMn/JEu| = 8 ± 1.5. The consequence this result has on long range spin-spin interaction via charge carriers as well as on hyperfine interaction is discussed.  相似文献   

15.
Microwave measurements on the ground and first eight excited states of the ring-puckering vibration of butadiene sulfone have been extended to millimeter wavelengths. The microwave spectra of the same vibrational states of α,α′-D4 butadiene sulfone have been observed. For both isotopomers the Coriolis interaction between the v = 0 and v = 1 states has been analyzed to give the energy separation between these two states. These data and the variation of the rotational constants have been used to derive reduced potential functions for the ring-puckering vibration. The barrier to ring inversion is 49(2) cm−1 for butadiene sulfone and 44(2) cm−1 for the α,α′-D4 isotopomer. The ring-puckering vibrational dependence of the quartic centrifugal distortion constants, including a small dependence of ΔJ and δJ, has been accounted for.  相似文献   

16.
The molecular rotational spectrum of 3-butynenitrile (3BN, propargyl cyanide), HCCCH2CN, has been investigated in the vibrational ground state. A total of 222 transitions up to J = 69 have been measured between 8 and 300 GHz. The Hamiltonian used for the spectral analysis was required to include all centrifugal terms of fourth and sixth orders and one term of eighth order in the angular momentum components in order to reproduce the transition frequencies within the experimental error. Significant values for the respective distortion coefficients could be determined. The molecular dipole moment components were calculated from measured Stark effect shifts as |μa| = (3.23 ± 0.05) D, |μb| = (2.34 ± 0.02) D; μtot = (3.99 ± 0.05) D.  相似文献   

17.
The microwave spectrum of 2-cycloheptene-1-one, an unsaturated cyclic ketone, has been studied in the regions 26.5–40 and 7.0–12.4 GHz. An analysis of the ground-state “a”-type transitions yielded the rotational constants (in MHz): A = 2997.27, B = 2049.24, C = 1399.76. The “a”-type transitions of an excited vibrational state were also assigned, giving A = 3000.51, B = 2046.65, C = 1398.88. The centrifugal distortion constants, DJ and DJK, were needed to fit the data adequately. A study of the Stark effect yielded the dipole moment components (in debye) μa = 3.63 ± 0.023 and μc = 0.882 ± 0.040. The μb component could not be determined from the Stark effect data. These data are used to discuss the molecular conformation of cycloheptene-1-one.  相似文献   

18.
The pure rotational R-branch spectrum of CH4 arising from the centrifugal distortion moment has been studied using a simple 12.10-m light-pipe cell and a conventional interferometer. Ten forbidden (JJ + 1) transitions for J = 7 to J = 16 have been observed in the spectral region 80–200 cm?1 with a theoretical resolution of 0.5 cm?1. The integrated intensity of the six strongest lines has been measured and was found to be of the order of twice that calculated from the distortion moment obtained earlier from a molecular beam study of the (J = 2) rotational level. In the approximation that frequency shifts due to this excess intensity are neglible, it has been determined that the rotational constant B0 = (5.245 ± 0.004) cm?1 and the scalar distortion constant DS = (1.19 ± 0.09) × 10?4 cm?1. It is argued that the excess intensity is due to higher-order terms in the dipole moment operator and the validity of the frequency analysis is considered in this context.  相似文献   

19.
The microwave spectrum of 3,4-epoxy-1-butene has been studied in the region 26.5–40 GHz. For the ground-state molecule, 170 lines have been assigned up to J = 34. From these the rotational constants and the centrifugal distortion constants were determined by least-squares fitting. The rotational constants are (in MHz): A = 17367.284 ± 0.011, B = 3138.186 ± 0.004, C = 3043.697 ± 0.004. The dipole moment has been determined from the Stark effect as (in Debye): μa = 0.72 ± 0.01, μb = 1.688 ± 0.003, μc = 0.39 ± 0.02, μ = 1.875 ± 0.005. The rotational constants and dipole moment components indicate that the assigned conformer is the s-trans form. A rotational assignment has also been made for the first excited state of the torsional mode. The fundamental frequency of the torsional mode has been estimated as 142 ± 20 cm?1 from relative intensity measurement.  相似文献   

20.
Millimeter wave rotational spectra of phosphorus oxychloride (OPCl3) in the ground and excited vibrational states have been recorded and analyzed. The v5 = 1 and v6 = 1 state spectra show large splittings due to l resonance and the effect of the 2, -1 term rt. Coriolis constants have been obtained for the two lowest degenerate states. The spectra of the asymmetric top species OP35Cl237Cl have been analyzed and centrifugal distortion constants obtained. These have been used to determine the harmonic force field of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号