首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of Ph2P(CH2)n(C5H4)Li, (n = 0, 2), with MCl4 or CpTiCl3 (M = Ti, Zr; Cp = η5-C5H5) form Cl2M[(η5-C5H4)(CH2)nPPh2]2 or Cl2CpTi[(η5-C5H4)-(CH2)2PPh2] in good yields. Chemical reduction with Al, or electrochemical reduction of these complexes, under CO, are described. The titanium(IV) and zirconium(IV) derivatives react with metal carbonyls (Mo(CO)6, Cr(CO)6, Fe(CO)5, Mo(CO)4(C8H12)) under formation of new heterobimetallic complexes. Reduction with Al of Cl2CpTi[(η5-C5H4)(CH2)2PPh2]Mo(CO)5 under CO results in a new heterobimetallic species containing low valent titanium. Both complexes Cl2M[(η5-C5H4)(CH2)2PPh2]2 (M = Ti, Zr) react with [Rh(μ-Cl)(CO)(C2H4)]2 to yield {RhCl(CO)(Cl2M[(η5-C5H4)(CH2)2PPh2]2)}x, which is assumed to be a dimer, in which the titanium or the zirconium compounds act as bridging diphosphine ligands between the rhodium atoms.  相似文献   

2.
Isomers of Os3(CO)10(diphosphine) (diphosphine = Ph2P(CH2)nPPh2; n = 2 (dppe), n = 3 (dppp), and n = 4 (dppb)) have been prepared in which the diphosphine is chelating (1,1-isomer) or bridging (1,2-isomer), respectively, by displacing butadiene or acetonitrile from the complexes Os3(CO)10(cis- or trans-C4H6) or Os3(CO)10(MeCN)2. Ph2PCH2PPh2 (dppm) gives only the known bridging (1,2-isomer) whichever starting material is used. Structures have been established by infrared, 31P and 13C NMR methods.  相似文献   

3.
Spectroscopic investigations, including 31P, 1H and 13C NMR studies, on the formally 6-coordinate bisphosphine complexes [MX(CO)2{Ph2P(CH2)nPPh2}(η3-C7H7)] (M  Mo, W; X  I, Cl; n = 2 (dppe), n = 1 (dppm); C7H7  cycloheptatrienyl) reveal a structure with no molecular plane of symmetry in which inequivalent P-donor atoms are arranged cis-cis and cis-trans to the two mutually cis-carbonyl groups. The dppe complexes exhibit a fluxional process which interconverts inequivalent phosphorus environments. Low temperature 1H and 13C NMR studies on the diamine derivatives [MCl(CO)2(H2NCH2CH2NH2)(η3-R)] (M  Mo, W, R  C7H7; M  Mo, R  C3H5 (allyl)) imply that the non-symmetric structure of the bisphosphine analogues is adopted. The adducts [WI(CO)2{Ph2P(CH2)n-PPh2} {η3-C9H7(CN)4}] (n = 1 or 2) are formed by tetracyanoethene addition to the trihapto-bonded cycloheptatrienyl ring of the tungsten complexes [WI(CO)2-{Ph2P(CH2)nPPh2}(η3-C7H7)] (n = 1 or 2).  相似文献   

4.
The O-perrhenato complexes LnMOReO3 (LnM = Re(CO)5, Rh(PPh3)2(CO), Ir(PPh3)2(CO), Pt(PPh3)2(H), Ru(η5-C5H5)(PPh3)2, Os(PPh3)3(CO)(H), Ir(PPh3)2(CO)(H)(Cl) have been prepared from the corresponding halogeno compounds with AgReO4 or NaReO4, respectively. The spectroscopic data (IR, 1H NMR) indicate that ReO4 is a stronger ligand compared to ClO4, SO3CF3 and BF4.  相似文献   

5.
Thiocyanogen and selenocyanogen react with Ru(CO)3(PPh3)2 to give respectively the complexes Ru(CO)2(PPh3)2(NCS)2 and Ru(CO)2(PPh3)2(NCSe)2. (M—NCS and M—SCN represent N- and S-thiocyanato groups, M—NCSe and M—SeCN represent N- and Se-selenocyanato groups respectively, while M—CNS indicates the bridging coordination mode of thiocyanate.) Only the thiocyanogen reacts with Ru3(CO)12 giving [Ru(CO)2(CNS)2]n, which dissolves in hot coordinating solvents, such as pyridine, to form Ru(CO)2(py)2(NCS)2. Selenocyanogen is less effective than thiocyanogen in the oxidative addition reactions with rhodium(I) and iridium(I) complexes; in fact selenocyanogen does not react with Rh(CO)(PPh3)2Cl while with Ir(CO)(PPh3)2Cl the former gives Ir(CO)(PPh3)2(SeCN)2Cl by an equilibrium reaction. The coordination number of the metal and the charge on the complex do not change the bonding mode of the thiocyanate and selenocyanate groups in the iridium(III) complexes; in the Ir(PPh3)2ClX2 and [Ir(Ph2PC2H4PPh2)2X2]+ (X = SCN and SeCN) complexes the pseudohalogens are S- and Se-bonded.The complexes trans-M(PPh3)2(SeCN)2 (M = Pd, Pt) have been obtained by reacting M(PPh3)4 with selenocyanogen.  相似文献   

6.
The linkage isomers CpM(CO)nSCN and CpM(CO)nNCS (Cp = η-C5H5; M = Fe, n = 2; M = Mo, n = 3) are interconverted by 366 nm irradiation in tetrahydrofuran solution at 30°C. Molybdenum and tungsten halide complexes CpM(CO)2-(PPh3)X undergo cistrans isomerization and disproportionation to CpM(CO)(PPh3)2X and CpM(CO)(PPh3)2X under similar conditions (benzene solution).  相似文献   

7.
Numerous new complexes of the type V(CO)5n(NO)Ln, have been prepared either by nitrosylation of [V(CO)6nLn]?(n  2, 3) with NOX (X  Cl, BF4) and [Co(NO)2Br]2, resp., or by reaction of L with “V(CO)5NO” generated in situ. The compounds comprise n  1: L  PPh3, PMe2H, P(OMe)3 and Ph2PCH2?PPh2 (dppm); n  2: L22  2 PMe2H, 2 PMe3, 2 P(OMe)3, dppm, Ph2P(CH2)2?PPh2, Ph2P(CH2)3,PPh2, Me2P(CH2)2PMe2, Ph2As(CH2)2AsPh2, o?C6H4(AsMe2)2 (diars) and o?C6H4(AsPh2)PPh2; n  3: L3  1.5 diars and CH3C(CH2PPh2)3. IR (CO and NO stretching region) and 51V NMR spectra are discussed; for n  2 and 3, the positions of the arsine and phosphine ligands relative to NO are either cis for all the ligand functions (arsines) or cis/trans.  相似文献   

8.
Ph2P(O)C(S)N(H)R (R  Me, Ph) reacts with M(CO)35-C5H5)Cl (M  Mo, W) in the presence of Et3N to give M(CO)25-C5H5)(Ph2P(O)C(S)NR). The deprotonated ligand coordinates in a bidentate manner through N and S to give a four-membered ring system. M(CO)3(PPh3)2Cl2 (M  Mo, W) reacts with Ph2P(O)C(S)N(H)R (R  Me, Ph) in the presence of Et3N to give complexes in which the central metal atoms are seven coordinate through two ligands bonded via O and S to form five-membered ring systems, one PPh3, and two CO groups. The complexes were characterised by elemental analyses, IR, 1H NMR, and 31P NMR spectroscopy, and an X-ray structural analysis of Mo(CO)2(PPh3)(Ph2P(O)C(S)NPh)2 · CH2Cl2.  相似文献   

9.
The complexes [MHCl(CO)(PPh3)3] (M = Ru or Os) readily undergo substitution at the site trans to the hydride ligand to afford phosphinite-, phosphonite-, or phosphite-containing products [MHCI(CO)(PPh3)2L] [L = P(OR)Ph2, P(OR)2Ph or P(OR)3 respectively; R = Me or Et]. The ruthenium complexes alone undergo further substitution to afford complex cations [RuH(CO)(PPh3)nL4?n]+ [n = 2, L = P(OMe)3; n = 1, L = P(OR)3; n = 0, L = P(OR)2Ph or P(OR)Ph2] which were isolated and characterised as their tetraphenylborate salts. Synthesis of the cationic complexes [IrHL5][BPh4]2 [L = P(OR)3, R = Me or Et] is also reported. Stereochemical assignments based on NMR data are given, and second order 31P and high field 1H NMR patterns are analysed.  相似文献   

10.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

11.
Compounds of the type [XM(CO)2(ν-allyl)L2] (where X = Cl and Br; M = Mo and W; L2 = Ph2PCH2PPh2 and Ph2 PCH2CH2PPh2) have been prepard from the corersponding MeCN complexes. The spectral properties of these compounds and the effects of chelate rign size on 31P coordination shifts and J(183W—31P) have been investigated.  相似文献   

12.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

13.
The complexes OsHX(CS)L(PPh3)2 (X  Cl, Br; L  CO and X  Cl; L  CN-p-tolyl), which contain mutually cis hydrido and thiocarbonyl ligands, undergo transfer of the hydrido ligand to CS when treated with CO to give blue complexes containing the thioformyl ligand [OsCHS]. OsCl(CHS)(CO)2(PPh3)2 reacts with borohydride to give the first metal complex of the thioformaldehyde monomer, viz. Os(η2-CH2S)(CO)2(PPh3)2, which reacts rapidly with HCl to give OsCl(SCH3)(CO)2(PPh3)2 and then, by a slower reaction, OsCl2(CO)2(PPh3)2 and CH3SH. The ligands produced in this stepwise reduction have possible relevance as models for postulated intermediates in the Fischer—Tropsch synthesis. Synthetic routes to formyl [OsCHO], iminoformyl [OsCHNMe] and secondary carbene complexes [OsCHSMe, OsCHNMe2, OsCHOMe] are also demonstrated.  相似文献   

14.
Metal Complexes of Biological Important Ligands. LXXXII. Triphenylphosphine Molybdenum, Tungsten, Ruthenium, and Iridium Complexes of N-Acyl-α-Aminocarboxylates The reactions of the hydrido complexes RuHCl(CO) · (PPh3)3, RuH2(PPh3)4 and IrH3(PPh3)3 with N-acyl-α-aminocarboxylates give the carboxylate complexes RuCl(O2CCHRNHCOR′)(CO)(PPh3)2 ( 1–3 ), RuH(O2CCHRNHCOR′)(PPh3)3 ( 4–6 ) and IrH2(O2CCH2NHCOPh)(PPh3)3 ( 7 ). The structure of RuCl · (O2CCHNHCOPh)(CO)(PPh3)2 ( 1 ) has been determined by x-ray diffraction. The triphenylphosphine complexes MBr · (O2CCH2NHCOR)(CO)2(PPh3)2 (M = Mo, W) ( 8–12 ) and Mo(O2CCHRNHCOR′)2(CO)2(PPh3)2 ( 13–17 ) are formed from MBr2(CO)2(PPh3)2 (M = Mo, W) with one or two equivalents of N-acyl-a-aminoacidates, respectively.  相似文献   

15.
New anionic carbonylcobalt(I) complexes [X2Co(CO)2(PPh3)](PR4) (X=Cl, PR4 = PBzPh3 (I); X = Br, PR4 = PEtPh3 (II)) have been prepared by reduction of the cobalt(II) halides with NaBH4 in the presence of PPh3 and the phosphonium salt PR4X. Cleavage of halide bridges in dimeric or polymeric [XCo(PPh3)2]n and [XCo(PPh3)]n gives the neutral dicarbonyl derivatives XCo(CO)2PPh3)2. Treatment of ClCo(CO)2(PPh3)2 with alkylating agents gives the known σ- and η- organocobalt(I) derivatives, and reactions with TIClO4 in the presence of various amounts of different mono- and bi-dentate phosphines give the cationic tricarbonyl [Co(CO)3(PPh3)2]+, dicarbonyl [Co(CO)2(PMePh2)3]+ and monocarbonyl [Co(CO)L4]+ complexes (L4 = 4P(OMe)3, 2 dppe and 2dppm). The dppm complex crystallizes in the monoclinic space group P21/c with a 17.895(6), b 10.751(2), c 24.687(4) Å, β 98.92(1)°, and Dcalc 1.35 g cm−3 for Z = 4. A final R value of 0.077 ( Rw = 0.061), based on 2656 observed reflections, was obtained. The cobalt atom exhibits a distorted trigonal bipyramidal geometry. The perchlorate anion is severely disordered or freely rotating.  相似文献   

16.
Attempts to synthesize complexes of group 6 carbonyl compounds [M(CO)6] (M = Cr, Mo, W) with the carbone C(PPh3)2 ( 1 ) via the photo chemically created adducts [(CO)5M(THF)] lead to quantitative formation of the salts [HC(PPh3)2]2[M2(CO)10] ( 2 , Cr; 3 , Mo; 4 , W). Alternatively, a long-time thermal reaction of [Mo(CO)6] performed with 1 in THF generates a series of products initiated by a Wittig-type reaction. In addition to 3 , minor amounts of [(CO)5MoCCPPh3] ( 8 ), [(CO)5MoO2CC{PPh3}2] ( 5 ), and the carbonate complexes [HC(PPh3)2]2[(CO)5Mo(CO3)Mo(CO)4] ( 6 ) and [HC(PPh3)2]2[(CO)4Mo(CO3)Mo(CO)4] ( 7 ) were found. Compounds 2 , 3 , 5 , 6 , and 7 were characterized by X-ray analyses, 31P NMR, and IR spectroscopy. The water, necessary for the formation of the carbonate, stems from decomposition of THF.  相似文献   

17.
Complexes of the general formula HM(CO)n(oligophos) (M = V, n = 2; M = Nb, n = 3 and 2; M = Ta, n = 3) have been prepared by ion exchange on silica gel from their ionic precursors [Et4N][M(CO)4,3(oligophos)] (n = 3) or by UV irradiation of HM(CO)n+1(oligophos) (n = 2). The new compounds, including fac-[Et4N]-[Nb(CO)3PPh(CH2CH2PPh2)2] and cis-[Et4N][Ta(CO)4PPh(CH2CH2PPh2)2], are characterized by their IR (ν(CO)), 1H (hydride), 31P and metal (51V and 93Nb) NMR spectra.  相似文献   

18.
The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4 ? THF at ?70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(μ3‐BH)(Cp*Co)2(μ‐CO)M(CO)5] ( 1 – 3 ; 1 : M=W, 2 : M=Mo, 3 : M=Cr). During the syntheses of complexes 1 – 3 , capped‐octahedral cluster [(Cp*Co)2(μ‐H)(BH)4{Co(CO)2}] ( 4 ) was also isolated in good yield. Complexes 1 – 3 are isoelectronic and isostructural to [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 5 ) and [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ), with a trigonal‐pyramidal geometry in which the μ3‐BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis‐phosphine ligands, the room‐temperature photolysis of complexes 1 – 3 , 5 , 6 , and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 7 ) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)nPPh2] (n=1–3) yielded complexes 9 – 11 , [3,4‐(Ph2P(CH2)nPPh2)‐closo‐1,2,3,4‐Ru2Fe2(BH)2] ( 9 : n=1, 10 : n=2, 11 : n=3). Quantum‐chemical calculations by using DFT methods were carried out on compounds 1 – 3 and 9 – 11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO–LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and 1H, 13C, and 11B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1 , 2 , 4 , 9 , and 10 .  相似文献   

19.
Neutral hydrido complexes [ML]ClH(PPh3)3 ([ML] = Ru(CO), Os(CO) and Ir(Cl)] react with thionitrosodimethylamine, Me2NNS, to give [ML]ClH-(SNNMe2)(PPh3)2 with H trans to Me2NNS, while the hydrido cations cis,trans-[[ML]H(SNNMe2)2(PPh3)2]+ are obtained from Me2NNS and [Ru(NCMe)2(CO)-(PPh3)2]+, [OsH(OH2)(CO)(PPh3)3]+ and [IrClH(NCMe)2(PPh3)2]+, respectively. The coordinatively unsaturated aryl complexes [ML′]Cl(p-tolyl)(PPh3)2 ([ML′]Ru(CO), Os(CO) and Os(CS)) coordinate one molecule of Me2NNS to give [ML′]Cl(p-tolyl)(SNNMe2)(PPh3)2, the chloride ligands of which are labile. Spectroscopic data suggest that in all these complexes the Me2NNS ligand adopts a η1(S) coordination mode.  相似文献   

20.
The reactions of the halogenoalkyl compounds [Cp(CO)3W{(CH2)nX}] (Cp = η5-C5H5; n = 3-5; X = Br, I) and [Cp(CO)2(PPhMe2)Mo{(CH2)3Br}] with the nucleophiles Z = CN and gave compounds of the type [Cp(CO)3W{(CH2)nZ}] for the tungsten compounds, whilst cyclic carbene compounds were obtained from the reactions of the molybdenum compound. The reactions of [Cp(CO)3W{(CH2)nBr}] (n = 3, 4) and [Cp(CO)2(PPhMe2)Mo{(CH2)3Br}] with gave [Cp(CO)3W{(CH2)nONO2}] and [Cp(CO)2(PPhMe2)Mo{(CH2)3ONO2}], respectively. The reaction of [Cp(CO)3W{(CH2)nBr}] with AgNO2 gave [Cp(CO)3W{(CH2)nNO2}]. In the solid state the complex [Cp(CO)3W{(CH2)3NO2}] crystallizes in a distorted square pyramidal geometry. In this molecule the nitropropyl chain deviates from the ideal, all-trans geometry as a result of short, non-hydrogen intermolecular N-O?O-N contacts. The reactions of the heterobimetallic compounds [Cp(CO)3W{(CH2)3}MLy] {MLy = Mo(CO)3Cp, Mo(CO)3Cp and Mo(CO)2(PMe3)Cp; Cp = η5-C5(CH3)5} with PPh3 and CO were found to be totally metalloselective, with the ligand always attacking the metal site predicted by the reactions of the corresponding monometallic analogues above with nucleophiles. Thus the compounds [Cp(CO)3W{(CH2)3}C(O)MLz] {MLz = Mo(CO)2YCp, Mo(CO)2YCp and Mo(CO)Y(PMe3)Cp; Y = PPh3 or CO} were obtained. Similarly, the reaction of [Cp(CO)2Fe{(CH2)3}Mo(CO)2(PMe3)Cp] with CO gave only [Cp(CO)2Fe{(CH2)3C(O)}Mo(CO)2(PMe3)Cp]. Hydrolysis of the bimetallic compound, [Cp(CO)3W(CH2)3C(O)Mo(CO)(PPh3)(PMe3)Cp], gave the carboxypropyl compound [Cp(CO)3W{(CH2)3COOH}]. Thermolysis of the compound [Cp(CO)2Fe(CH2)3Mo(CO)3(PMe3)Cp] gave cyclopropane and propene, indicating that β-elimination and reductive processes had taken place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号