首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic structure of the disordered alloy Fe65Ni28Mn7 was investigated in the temperature 4.2–300 K by the methods: small angle scattering of neutrons, Mössbauer effect, magnetization, magnetic contribution to the thermal coefficient of the thermal expansion, and resistivity. All measurements show that long-range ferromagnetic order appears below Tc ? 160 K. At the same time for T ? 100 K, a dramatic change of magnetic state takes place which is interpreted as the freezing of “spin glass”. An increase of the magnetic contribution to the resistivity with decreasing temperature was also found. This increase was attributed to the existence of poor-bonded magnetic moments of the Kondo-type. A model of the magnetic ground state is proposed which includes the details of magnetic behavior such as long-range ferromagnetic order, spin glass, finite ferro-and antiferromagnetic clusters, and Kondo-type states. A magnetic phase diagram of the system Fe65(Ni1?xMnx)35 is also proposed.  相似文献   

2.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

3.
A spin fluctuation theory for itinerant electrons that includes short-range magnetic order (SRMO) is used to calculate the Curie-temperature (Tc and the temperature dependence of the magnetization and the susceptibility of bulk Fe. When spin correlations are included the Curie-temperature is reduced by 9% to Tc = 2000 K. The calculated temperature-dependence of the magnetization and the magnetic susceptibility are in excellent agreement with experimental results.  相似文献   

4.
The X-ray diffraction, M?ssbauer, calorimetric, and magnetic characteristics of zirconolite GdFeTi2O7 have been measured to determine the ground magnetic state. A kink dependent on the magnetic prehistory of the sample has been revealed in the temperature dependence of the magnetic moment at T = 3 K. M?ssbauer spectroscopy has confirmed the nonequivalence of the iron ion positions in GdFeTi2O7. The experimental data obtained allow the conclusion on the formation of a spin glass state with the freezing temperature T f = 3 K in the GdFeTi2O7 compound.  相似文献   

5.
We have studied the magnetic and transport properties of Fe doped La0.65A0.35Mn0.95Fe0.05O3 (A = Ca, Sr, Pb, Ba) manganites. All the compositions show ferromagnetic/metal to paramagnetic/insulator transition (TC) except the Pb doped sample which is insulating and ferromagnetic (FM) in the entire temperature range. The magnetization and TC are decreased by decreasing the cation size on La site. The transition temperature and magnetic moment at 77 K is a maximum for Sr doped sample and is decreasing if we increase or decrease the cation size from Sr size. The maximum value of TC and magnetic moment for Sr based sample is most likely due to the closer ionic sizes of La and Sr as compared to the other dopants (Ca, Pb, and Ba). We observed a spin freezing type effect in the Pb doped sample below 120 K in resistivity, ac susceptibility and in magnetization. This suggests that the AFM interactions introduced by the Fe are most effective in the Pb doped composition leading to increased competition between the FM and AFM interactions. This FM and AFM interaction generates some degree of frustration leading to the appearance of spin glass like phase whose typical magnetic behavior is studied for small ion when the metallic like behavior is lost.  相似文献   

6.
We report low field dc magnetization measurements on (FexMn1?x)75P16B6Al3 alloys at 4 ? T ? 300 K. Reentrant magnetic behavior is observed for x = 0.65, 0.7 and 0.8. By comparing field cooled and zero-field cooled states at low T we separate out the reversible and irreversible contributions to the magnetization M and identify the (field-dependent) temperature for the onset of irreversibility. It is shown that the reversible part of the magnetization can be described by the usual scaling laws for critical behavior in magnetic systems not only at the transition from the paramagnetic to the ferromagnetic phase but also when the latter transforms to a spin glass. We identify the irreversible part of M with a spin glass order parameter.  相似文献   

7.
Doping of the ZnGeAs2 semiconductor with manganese has produced compositions with spontaneous magnetization and high Curie temperatures of up to 367 K for the composition 3.5 wt% Mn. Their magnetic properties are characteristic of spin glasses at temperatures T < T S and magnetic fields H < 11 kOe. In stronger fields, the spin glass state transforms into a phase with a spontaneous magnetization 4–5 times weaker than that to be expected under ferromagnetic ordering of all Mn ions. This is obviously a singly-connected ferromagnetic phase containing regions with frustrated bonds. The frustrated regions and the spin glass phase have inclusions of noninteracting ferromagnetic clusters, because these regions and the spin glass phase at low temperatures exhibit a strong increase in the magnetization M, with the dependence M(T) being described by the Langevin function. Measurements of the electrical resistivity ρ and the Hall effect have revealed that, for T < 30 K, the resistivity ρ of compositions with 1.5 and 3.5 wt % Mn is higher that at 30 K, which makes superexchange dominant and gives rise to the onset of the spin glass state. The nonuniform distribution of Mn ions in the spin glass phase accounts for the existence of isolated ferromagnetic clusters, their ferromagnetism being generated by carrier-mediated exchange. As the temperature increases still more, the increase in the mobility occurs faster than the decrease in the concentration, thus promoting an enhancement of the carrier-mediated exchange and growth of the ferromagnetic clusters in size, which at T = T S come in contact. This signifies a transition from a multiply-to a singly-connected ferromagnetic phase, which contains microregions with frustrated bonds.  相似文献   

8.
The temperature dependence of the magnetization and elastic neutron scattering spectra of Ba2Fe2GeO7 barium ferrigermanate polycrystals are studied. The magnetization is found to depend on the magnetic prehistory of a Ba2Fe2GeO7 sample below T = 8 K. Analysis of the neutron scattering spectra does not reveal long-range magnetic order down to 2 K. Our experimental data indicate the existence of a spin glass state in Ba2Fe2GeO7 polycrystals.  相似文献   

9.
Polycrystalline Nd0.84K0.12MnO3 was prepared in single phase form with Pbnm space group. The magnetic properties are studied from magnetization, linear and non-linear susceptibility, and thermoremanent magnetization measurements. The sample exhibits paramagnetic to ferromagnetic transition followed by low temperature spin glass like transition. From frequency variation of ac susceptibility measurements, the spin glass transition temperature is found to be 97.6±0.1 K with critical exponents =1.13±0.06. The critical exponent γ corresponding to spin glass transition has been determined from the third harmonic susceptibility analysis and it is found to be 3.09±0.05. The effective number of spins blocked under frustration and their correlation length are determined from the analysis of thermoremanent magnetization.  相似文献   

10.
The magnetic dynamics of charge ordered Nd0.8Na0.2MnO3 compound was studied by measuring the temperature variation of magnetization for different magnetic fields up to 7 T and, the field variation of magnetization at different temperatures down to 5 K. This sample exhibits a charge-ordering transition at 180 K, followed by a weak ferromagnetic (FM) transition at around 100 K and a spin glass like transition below 40 K. Suppression of charge-ordering and spin glass like transition and increase in FM TC were observed with an increase in magnetic field. A reversible metamagnetic transition above a threshold field (Hf) of 4.5 T was observed at 130 K, followed by a saturation magnetization of 3.2 μB/f.u. However at 5 K, an irreversible field induced first order phase transition from charge ordered state to FM state was observed at Hf=5 T. For comparison, the temperature and field variations of magnetization were studied on a FM compound from the same series with the composition Nd0.90Na0.10MnO3. A clear FM transition with a TC of 113 K and a saturation magnetization of 4.3 μB/f.u was observed.  相似文献   

11.
The distribution of local moments in a two dimensional Ising spin glass with short range Gaussian interactions is investigated by Monte Carlo simulations. Below the freezing temperatureT f , this distribution has a sharp peak at the saturated moment. The spins can clearly be characterized by a fractionq of frozen spins and 1-q of fast spins which are in thermal equilibrium. Just belowT f the frozen spins appear in small clusters; the spin glass transition isnot a percolation process. Our results support the local and nonequilibrium character of the spin glass transition.q is related to the remanent magnetization (TRM), the linear response and the field cooled susceptibility. As a consequence magnetic resonance experiments should see, in addition to a broad background, a sharp line splitting whose position does not shift with temperature.  相似文献   

12.
The ferromagnetic phase transitions of the solid solution system EuxLa1-xS with Eu-concentrations x=0.85, 0.65 and 0.50 are analyzed by measurements of the initial permeability, the specific heat and the magnetization. For the sample with x=0.85 the spontaneous magnetization develops continuously between two temperatures Tc1 and Tc2. For the sample with x=0.65 a well defined magnetic ordering temperature exists. One observes strongly curved magnetization isotherms when plotting the magnetization data in form of modified Arrott plots. The M(H, T) data above the curved region show usual ferromagnetic scaling with the critical exponents β=0.5 and δ=4.7. These exponents fulfill the scaling relations with the exponents γ=2.1 and α≈-1 derived for the initial susceptibility and the magnetic specific heat. The sample with the concentration x=0.50 turns out to be not truely ferromagnetic. It is a spin glass with strong ferromagnetic short range order.  相似文献   

13.
The temperature, magnetic field, and frequency dependences of the ac susceptibility for an aluminosilicate glass containing 14.3 at% cobalt have been measured. These results show significant differences with the dc measurements in very low fields at all temperatures above and below the spin glass freezing temperature Tf.  相似文献   

14.
The magnetic properties of an EuBaCo1.9O5.36 single crystal are studied in the temperature range T = 2–300 K and the magnetic field range H ≤ 90 kOe. This binary layered cobaltite single crystal has vacancies in the cobalt and oxygen sublattices, in contrast to the stoichiometric EuBaCo2O5.5 composition. All cobalt ions in EuBaCo1.9O5.36 are in a trivalent state. The single crystal has an orthorhombic structure with space group Pmmm, and its unit cell parameters are a = 3.883 Å, b = 7.833 Å, and c = 7.551 Å. The field and temperature dependences of the magnetization of the single crystal demonstrate that it is ferrimagnet below TC = 242 K. At T < 300 K, all three spin states of the Co3+ ions are present. The nearest-neighbor interactions give antiferromagnetic (AFM) and ferromagnetic (FM) contributions to the exchange energy. The ratio of the AFM to the FM contributions changes when temperature decreases because of a change in the spin state of the Co3+ ions. The single crystal exhibits signs of mictomagnetism at low temperatures in high magnetic fields. At T = 2 K and H = 90 kOe, the zero-field and nonzero-field magnetizations are strongly different because of a uniaxial magnetic anisotropy, which tends to set magnetization along the magnetic field applied in cooling throughout the crystal volume. As a result, a complex ferrimagnetic structure with a noncollinear direction of Co3+ spins appears. The following phenomena characteristic of mictomagnets are also observed in the EuBaCo1.9O5.36 single crystal: a shift in a magnetization hysteresis loop when temperature decreases, retained hysteretic phenomena and no magnetization saturation in high magnetic fields, and an orientation transition. The mictomagnetic state in EuBaCo1.9O5.36 is shown to be caused by the structural distortions induced by vacancies in the cobalt and oxygen sublattices and by the frustration of AFM and FM exchange interactions.  相似文献   

15.
The magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite are studied experimentally under hydrostatic pressure. The results show that, in the whole pressure range under investigation (0–1 GPa), the sample is a spin glass with a smeared phase transition to the paramagnetic state. It is found that the spin glass state arises from the frustration of the exchange coupling of the ferromagnetic clusters embedded in the antiferromagnetic matrix. The fraction of the sample volume occupied by the ferromagnetic phase is found to be V fer ~ 13%. Under hydrostatic pressure, the freezing temperature T f of the magnetic moments of the ferromagnetic clusters increases at a rate of 4.30 K/GPa and the magnetic ordering temperature T MO increases at a rate of 12.90 K/GPa. In addition, the ferromagnetic part of the sample increases by ΔV fer ~ 5%. The enhancement of the ferromagnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure is explained by the redistribution of oxygen vacancies and a decrease in the unit-cell parameters.  相似文献   

16.
Experimental results on EuxSr1?xS provide clear evidence for a cooperative phenomenon at the spin-glass transition, as distinguished from ordinary thermal blocking of superparamagnetic clusters. Only below the percolation threshold xp = 0.13 can single-clusters aspects be separated clearly (superparamagnetic regime). In the spin-glass regime for x >xp, susceptibility and remanent magnetization are studied near the freezing temperature in dependence on temperature, magnetic field and observation time. The anomalous slow relaxations of the remanent magnetization, which follow a power-law, exhibit a strong variation just near Tf0, the transition temperature deduced from static magnetization measurements. In addition, Tf values derived from ac-χ measurements are distinctly frequency dependent; the frequency variation decreases towards low frequencies and seems to saturate near the Tf0 value. The strong sensitivity of χ(Tf) to even small applied fields can be represented by a universal function independent of concentration. All these results emphasize the importance of the interactions among the spin clusters of spin glasses which are partially frustrated.  相似文献   

17.
Fe2O3 hematite (alpha) nanoparticles suspended in the liquid phase of the liquid crystal 4,4-azoxyanlsole (PAA) are cooled below the freezing temperature (397 K) in a 4000 G dc magnetic field. The in field solidification locks the direction of maximum magnetization of the particles parallel to the direction of the applied dc magnetic field removing the effects of dynamical fluctuations of the nanoparticles on the magnetic properties allowing a study of the intrinsic magnetic properties of the nanoparticles as well as the anisotropic behavior of the ferromagnetic resonance (FMR) signal. Freezing in PAA allows temperature-dependent measurements to be made at much higher temperature than previous measurements. The field position, line width and intensity of the FMR signal as a function of temperature as well as the magnetization show anomalies in the vicinity of 200 K indicative of a magnetic transition, likely the previously observed Morin transition shifted to lower temperature due to the small particle size. Weak ferromagnetism is observed below Tc in contrast to the bulk material where it is antiferromagnetic below Tc. The Raman spectrum above and below 200 K shows no evidence of a change in lattice symmetry associated with the magnetic transition.  相似文献   

18.
19.
The magnetic behavior of the diluted magnetic semiconductor Cd0.42Mn0.58In2S4 has been study by dc magnetization and ac susceptibility experiments. Zero field cooled and field cooled measurements reveal irreversibility below Tirr=2.60±0.15 K. Ac susceptibility data, performed as a function of the temperature and the frequency, confirm the spin-glass like behavior of the material with Tf=2.75±0.15 K. High temperature susceptibility data follow a typical Curie-Weiss law with θ=−74±1 K which suggests predominant antiferromagnetic interactions. The randomness of the magnetic ions, necessary to explain the magnetic behavior of the material, has been determined by X-ray powder diffraction experiments.  相似文献   

20.
The quadrupole 209Bi spin–spin and spin–lattice relaxation were studied within 4.2–300 K for pure and doped Bi4Ge3O12 single crystals which exhibit, as was previously found, anomalous magnetic properties. The results revealed an unexpectedly strong influence of minor amounts of paramagnetic dopants (0.015–0.5 mol.%) on the relaxation processes. Various mechanisms (quadrupole, crystal electric field, electron spin fluctuations) govern the spin–lattice relaxation time T 1 in pure and doped samples. Unlike T 1, the spin–spin relaxation time T 2 for pure and Nd-doped samples was weakly dependent on temperature within 4.2–300 K. Doping Bi4Ge3O12 with paramagnetic atoms strongly elongated T 2. The elongation, although not so strong, was also observed for pure and doped crystals under the influence of weak (~30 Oe) external magnetic fields. To confirm the conclusion about strong influence of crystal field effects on the temperature dependence of T 1 in the temperature range 4.2–77 K, the magnetization vs. temperature and magnetic field was measured for Nd- and Gd-doped Bi4Ge3O12 crystals using a SQUID magnetometer. The temperature behavior of magnetic susceptibility for the Nd-doped crystal was consistent with the presence of the crystal electric field effects. For the Gd-doped crystal, the Brillouin formula perfectly fitted the curve of magnetization vs. magnetic field, which pointed to the absence of the crystal electric field contribution into the spin–lattice relaxation process in this sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号